Trang chủ Lớp 9 SGK Toán 9 - Cùng khám phá Giải mục 1 trang 111, 112 Toán 9 Cùng khám phá tập...

Giải mục 1 trang 111, 112 Toán 9 Cùng khám phá tập 1: Trong Hình 5.30, đường thẳng a tiếp xúc với đường tròn (O; R) tại A và H là chân đường...

Gợi ý giải HĐ1, LT1, HĐ2, LT2 mục 1 trang 111, 112 SGK Toán 9 tập 1 - Cùng khám phá Bài 4. Tiếp tuyến của đường tròn. Trong Hình 5.30, đường thẳng a tiếp xúc với đường tròn (O; R) tại A và H là chân đường vuông góc kẻ từ O xuống a. Xác định độ dài OH. Vì sao A và H trùng nhau...

Hoạt động1

Trả lời câu hỏi Hoạt động 1 trang 111

Trong Hình 5.30, đường thẳng a tiếp xúc với đường tròn (O; R) tại A và H là chân đường vuông góc kẻ từ O xuống a. Xác định độ dài OH. Vì sao A và H trùng nhau, nhận xét về góc tạo bởi tiếp tuyến a và bán kính OA.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

+ Chứng minh OH là khoảng cách từ O đến đường thẳng a. Mà đường thẳng a tiếp xúc với đường tròn (O; R) nên \(OH = R\).

+ Chứng minh \(OA = R\) và \(OA \bot a\) tại A, từ đó suy ra A và H trùng nhau.

+ Góc tạo bởi tiếp tuyến a và bán kính OA bằng \({90^o}\).

Answer - Lời giải/Đáp án

Vì H là chân đường vuông góc kẻ từ O xuống a nên OH là khoảng cách từ O đến đường thẳng a.

Mà đường thẳng a tiếp xúc với đường tròn (O; R) nên \(OH = R\).

Vì đường thẳng a tiếp xúc với đường tròn (O; R) tại A nên khoảng cách từ O đến đường thẳng a bằng bán kính đường tròn (O; R). Tức là: \(OA = R\) và \(OA \bot a\) tại A.

Do đó, A và H trùng nhau.

Góc tạo bởi tiếp tuyến a và bán kính OA bằng \({90^o}\).


Luyện tập1

Trả lời câu hỏi Luyện tập 1 trang 111

Trong Hình 5.32, MN là tiếp tuyến của đường tròn (O; R) tại N. Tính R.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Chứng minh tam giác ONM vuông tại N, suy ra \(ON = NM.\tan M\)

Answer - Lời giải/Đáp án

Vì MN là tiếp tuyến của đường tròn (O; R) tại N nên \(ON \bot MN\). Do đó, tam giác ONM vuông tại N.

Suy ra \(ON = NM.\tan M = 3.\tan {30^o} = \sqrt 3 \)


Hoạt động2

Trả lời câu hỏi Hoạt động 2 trang 112

Trong Hình 5.33, đường tròn (O) có bán kính R và điểm A nằm trên đường tròn, đường thẳng a vuông góc với OA tại A. So sánh khoảng cách từ O đến đường thẳng a với bán kính R, từ đó xác định vị trí tương đối của a và (O).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

+ Chỉ ra \(OA = R\).

+ Chứng minh khoảng cách từ O đến đường thẳng a là: \(OA = R\).

+ Suy ra, đường thẳng a tiếp xúc với (O).

Answer - Lời giải/Đáp án

Vì A nằm trên đường tròn (O) nên \(OA = R\).

Vì đường thẳng a vuông góc với OA tại A nên khoảng cách từ O đến đường thẳng a là: \(OA = R\).

Do đó, đường thẳng a tiếp xúc với (O).


Luyện tập2

Trả lời câu hỏi Luyện tập 2 trang 112

Trong Hình 5.35, cạnh mỗi hình vuông trong lưới ô vuông có độ dài là 1 đơn vị. Chứng minh rằng đường thẳng AC là tiếp tuyến của đường tròn tâm B, bán kính BA.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

+ Sử dụng định lí Pythagore tính AB, BC, AC.

+ Sử dụng định lí Pythagore đảo chứng minh tam giác ABC vuông tại A, từ đó suy ra đường thẳng AC là tiếp tuyến của đường tròn tâm B, bán kính BA

Answer - Lời giải/Đáp án

Ta có:

\(\begin{array}{l}A{B^2} = {2^2} + {4^2} = 20,\\B{C^2} = {3^2} + {4^2} = 25,\\A{C^2} = {1^2} + {2^2} = 5.\end{array}\)

Do đó, \(A{B^2} + A{C^2} = B{C^2}\) nên tam giác ABC vuông tại A. Suy ra, \(AB \bot AC\).

Suy ra, đường thẳng AC là tiếp tuyến của đường tròn tâm B, bán kính BA.