Trang chủ Lớp 10 SBT Toán 10 - Chân trời sáng tạo Bài 5 trang 47 SBT Toán lớp 10 Chân trời sáng tạo:...

Bài 5 trang 47 SBT Toán lớp 10 Chân trời sáng tạo: Biết rằng trong khai triển của ({left( {ax + frac{1}{x}} right)^4}), số hạng kh...

Giải bài 5 trang 47 sách bài tập toán 10 - Chân trời sáng tạo - Bài 3. Nhị thức newton

Question - Câu hỏi/Đề bài

Biết rằng trong khai triển của \({\left( {ax + \frac{1}{x}} \right)^4}\), số hạng không chứa \(x\) là 24. Hãy tìm giá trị của tham số \(a\).

Khai triển \({\left( {a + b} \right)^4} = C_4^0{a^4} + C_4^1{a^3}{b^1} + C_4^2{a^2}{b^2} + C_4^3{a^1}{b^3} + C_4^4{b^4}\)

Số hạng không chứa \(x\) là số hạng có số mũ của \(x\) bằng 0

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Khai triển \({\left( {ax + \frac{1}{x}} \right)^4}\) có số hạng tổng quát: \(C_4^k{\left( {ax} \right)^{4 - k}}{\left( {\frac{1}{x}} \right)^k} = C_4^k{a^{4 - k}}{x^{4 - 2k}}\)

Số hạng không chứa \(x\) khi \(4 - 2k = 0 \Rightarrow k = 2\)

\( \Rightarrow \) Hệ số của khai triển là \(C_4^2{a^2} = 24 \Rightarrow 6{a^2} = 24 \Rightarrow {a^2} = 4 \Rightarrow a = 2\)

Vậy \(a = 2\).

Advertisements (Quảng cáo)