Trang chủ Lớp 10 SBT Toán 10 - Chân trời sáng tạo Bài 7 trang 45 SBT Toán 10 Chân trời sáng tạo: Chọn...

Bài 7 trang 45 SBT Toán 10 Chân trời sáng tạo: Chọn 4 trong số 3 học sinh nam và 5 học sinh nữ tham gia một cuộc thi....

Giải bài 7 trang 45 sách bài tập toán 10 - Chân trời sáng tạo - Bài 2. Hoán vị, chỉnh hợp và tổ hợp

Question - Câu hỏi/Đề bài

Chọn 4 trong số 3 học sinh nam và 5 học sinh nữ tham gia một cuộc thi.

a) Nếu chọn 2 nam và 2 nữ thì có bao nhiêu cách chọn

b) Nếu trong số học sinh được chọn nhất thiết phải có học sinh nam A và học sinh nữ B thì có bao nhiêu cách chọn

c) Nếu phải có ít nhất một trong hai học sinh A và B được chọn, thì có bao nhiêu cách chọn?

d) Nếu trong 4 học sinh được chọn phải có cả học sinh nam và học sinh nữu thì có bao nhiêu cách chọn?

Answer - Lời giải/Đáp án

a) Có 2 công đoạn:

+ Chọn 2 nam trong 3 nam: \(C_3^2 = 3\) cách chọn

+ Chọn 2 nữ trongg 5 nữ: \(C_5^2 = 10\) cách chọn

=> Theo quy tắc nhân, có 3×10 = 30 cách chọn

b)

Cần chọn 4 người, trong đó đã có A và B. Vậy ta chỉ cần chọn thêm 2 trong số 3+5-2=6 học sinh còn lại.

+ Chọn 2 học sinh còn lại trong 6 học sinh còn lại: \(C_6^2 = 15\) cách chọn

Vậy có 15 cách chọn

c) Có 3 trường hợp xảy ra: có cả A và B; chỉ có A; chỉ có B.

+ Có cả A và B: theo ý b) ta có 15 cách chọn

+ Chỉ có A:  Ta cần chọn thêm 3 bạn từ số HS còn lại (không tính cả A và B).

Advertisements (Quảng cáo)

Tức là chọn 3 trong 6 học sinh, có \(C_6^3 = 20\) cách chọn

+ Chỉ có B:  Ta cần chọn thêm 3 bạn từ số HS còn lại (không tính cả B và A).

Tức là chọn 3 trong 6 học sinh, có \(C_6^3 = 20\) cách chọn

Theo quy tắc cộng, ta có 15+20+20=55 cách chọn.

d) Cần chọn 4 người, mà chỉ có 3 nam nên chắc chẵn sẽ có HS nữ.

các trường hợp có thể xảy ra là: Có 1 nam; có 2 nam; có 3 nam

+ Chọn 1 nam và 3 nữ:

Chọn 1 nam (trong 3 nam): có 3 cách

Chọn 3 nữ trong 5 nữ: có \(C_5^3 = 10\) cách chọn

=> do đó có 3.10= 30 cách chọn 1 nam và 3 nữ

+ Chọn 2 nam và 2 nữ:

Chọn 2 nam (trong 3 nam): có \(C_3^2 =3\)  cách

Chọn 2 nữ trong 5 nữ: có \(C_5^2 = 10\) cách chọn

=> do đó có 3.10= 30 cách chọn 2 nam và 2 nữ

+ Chọn 3 nam và 1 nữ:

Chọn 3 nam (trong 3 nam): có 1 cách

Chọn 1 nữ trong 5 nữ: có 5 cách chọn

=> do đó có 1.5= 5 cách chọn 3 nam và 1 nữ

Vậy để chọn 4 học sinh có cả nam và nữ ta có: 30+30+5=65 cách chọn

Advertisements (Quảng cáo)