Trang chủ Lớp 10 Toán lớp 10 - Cánh diều Mục II trang 26, 27 Toán 10 tập 1 Cánh diều: Cho...

Mục II trang 26, 27 Toán 10 tập 1 Cánh diều: Cho hệ bất phương trình sau: (left{ begin{array}{l}x - 2y ge  - 2\7x - 4y le...

Giải mục II trang 26, 27 SGK Toán 10 tập 1 - Cánh diều - Bài 2. Hệ bất phương trình bậc nhất hai ẩn

Hoạt động 2

Cho hệ bất phương trình sau: \(\left\{ \begin{array}{l}x - 2y \ge  - 2\\7x - 4y \le 16\\2x + y \ge  - 4\end{array} \right.\)

a) Trong cùng mặt phẳng toạ độ Oxy, biểu diễn miền nghiệm của mỗi bất phương trình

trong hệ bất phương trình bằng cách gạch bỏ phần không thuộc miền nghiệm của nó.

b) Tìm miền nghiệm của hệ bất phương trình đã cho.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) Biểu diễn miền nghiệm của 3 bất phương trình trên cùng một mặt phẳng tọa độ.

b) Miền nghiệm của hệ là miền nghiệm chung của 3 bất phương trình.

Answer - Lời giải/Đáp án

a) Trong cùng mặt phẳng toạ độ Oxy, vẽ ba đường thẳng:

\({d_1}:x - 2y =  - 2\);

\({d_2}:7x - 4y = 16\)

\({d_3}:2x + y =  - 4\)

Thay tọa độ điểm O vào \(x - 2y\) ta được:

\(0 - 2.0 = 0 \ge  - 2\)

=> Điểm O thuộc miền nghiệm

=> Gạch phần không chứa điểm O.

Thay tọa độ điểm O vào \(7x - 4y\) ta được:

\(7.0 - 4.0 = 0 \le 16\)

=> Điểm O thuộc miền nghiệm

=> Gạch phần không chứa điểm O.

Thay tọa độ điểm O vào \(2x + y\)  ta được:

\(2.0 + 0 = 0 \ge  - 4\)

=> Điểm O thuộc miền nghiệm

Advertisements (Quảng cáo)

=> Gạch phần không chứa điểm O.

b)

 

Miền nghiệm của hệ là phần không bị gạch bỏ chung của cả 3 miền nghiệm trên.

Chú ý

Ở câu a, có thể thay điểm O bằng các điểm khác.

Luyện tập - vận dụng 2

Biểu diễn miền nghiệm của hệ bất phương trình sau: \(\left\{ \begin{array}{l}3x - y >  - 3\\ - 2x + 3y < 6\\2x + y >  - 4\end{array} \right.\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Bước 1: Vẽ các đường thẳng.

Bước 2: Gạch đi các phần không thuộc miền nghiệm của mỗi bất phương trình.

Bước 3: Phần không bị gạch là miền nghiệm.

Answer - Lời giải/Đáp án

Vẽ đường thẳng \(3x - y =  - 3\) (nét đứt)

Thay tọa độ O vào \(3x - y >  - 3\) ta được \(3.0 - 0 >  - 3\) (Đúng)

Gạch đi phần không chứa O

Vẽ đường thẳng \( - 2x + 3y = 6\) (nét đứt)

Thay tọa độ O vào \( - 2x + 3y < 6\) ta được \( - 2.0 + 3.0 < 6\) (Đúng)

Gạch đi phần không chứa O

Vẽ đường thẳng \(2x + y =  - 4\)(nét đứt)

Thay tọa độ O vào \(2x + y >  - 4\) ta được \(2.0 + 0 >  - 4\) (Đúng)

Gạch đi phần không chứa O

Miền nghiệm của hệ là phần không bị gạch chéo: