Trang chủ Lớp 10 Toán lớp 10 - Chân trời sáng tạo Bài 1 trang 62 Toán 10 tập 2 – Chân trời sáng...

Bài 1 trang 62 Toán 10 tập 2 – Chân trời sáng tạo: Phương trình nào trong các phương trình sau đây là phương trình đường tròn? Tìm tọa...

Giải bài 1 trang 62 SGK Toán 10 tập 2 – Chân trời sáng tạo - Bài 3. Đường tròn trong mặt phẳng tọa độ

Question - Câu hỏi/Đề bài

Phương trình nào trong các phương trình sau đây là phương trình đường tròn? Tìm tọa độ tâm và bán kính của đường tròn đó.

a) \({x^2} + {y^2} - 6x - 8y + 21 = 0\)

b) \({x^2} + {y^2} - 2x + 4y + 2 = 0\)

c) \({x^2} + {y^2} - 3x + 2y + 7 = 0\)

d) \(2{x^2} + 2{y^2} + x + y - 1 

+) Phương trình \({x^2} + {y^2} - 2ax - 2by + c = 0\) là phương trình đường tròn khi và chỉ khi \({a^2} + {b^2} - c > 0\), khi đó nó có tâm I(a;b) và bán kính \(R = \sqrt {{a^2} + {b^2} - c} \)

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

a) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 3,b = 4,c = 21\)

Ta có \({a^2} + {b^2} - c = 9 + 16 - 21 = 4 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(3;4)\) và có bán kính \(R = \sqrt 4  = 2\)

b) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 1,b =  - 2,c = 2\)

Ta có \({a^2} + {b^2} - c = 1 + 4 - 2 = 3 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(1; - 2)\) và có bán kính \(R = \sqrt 3 \)

c) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = \frac{3}{2},b =  - 1,c = 7\)

Ta có \({a^2} + {b^2} - c = \frac{9}{4} + 1 - 7 =  - \frac{{15}}{4} < 0\). Vậy đây không là phương trình đường tròn.

d) Phương trình không có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) nên phương trình đã cho không là phương trình đường tròn.

Advertisements (Quảng cáo)