Trang chủ Lớp 10 Toán lớp 10 - Chân trời sáng tạo Bài 5 trang 85 Toán 10 tập 2 – Chân trời sáng...

Bài 5 trang 85 Toán 10 tập 2 – Chân trời sáng tạo: Năm bạn Nhân, Lễ, Nghĩa, Trí và Tín sắp xếp một cách ngẫu nhiên thành một hàng ngang...

Giải bài 5 trang 85 SGK Toán 10 tập 2 – Chân trời sáng tạo - Bài 2. Xác suất của biến cố

Question - Câu hỏi/Đề bài

Năm bạn Nhân, Lễ, Nghĩa, Trí và Tín sắp xếp một cách ngẫu nhiên thành một hàng ngang để chụp ảnh. Tính xác suất của biến cố:

a) “Nhân và Tín không đứng cạnh nhau”

b) “Trí không đứng ở đầu hàng” 

Bước 1: Xác định không gian mẫu

Bước 2: Xác định biến cố đối

Bước 3: Tính xác suất của biến cố đối bằng công thức \(P\left( A \right) = \frac{{n(A)}}{{n(\Omega )}}\)

Bước 4:Xác định xác suất của biến cố ban đầu

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Tổng số kết quả có thể xảy ra của phép thử là \(n(\Omega ) = 5!\)

a) Gọi biến cố A “Nhân và Tín đứng cạnh nhau” là biến cố đối của biến cố “Nhân và Tín không đứng cạnh nhau”

Số kết quả thuận lợi cho A là: \(n(A) = 2!.3!{.2^3}\)

Xác suất của biến cố A là: \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{2!.3!{{.2}^3}}}{{5!}} = \frac{4}{5}\)

Vậy xác suất của biến cố “Nhân và Tín không đứng cạnh nhau” là \(1 - \frac{4}{5} = \frac{1}{5}\)

b) Gọi biến cố A “Trí đứng ở đầu hàng” là biến cố đối của biến cố “Trí không đứng ở đầu hàng” 

Số kết quả thuận lợi cho A là: \(n(A) = 4!.2\)

Xác suất của biến cố A là: \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{4!.2}}{{5!}} = \frac{2}{5}\)

Vậy xác suất của biến cố “Nhân và Tín không đứng cạnh nhau” là \(1 - \frac{2}{5} = \frac{3}{5}\)