Trang chủ Lớp 10 Toán lớp 10 Kết nối tri thức Mục 3 trang 40, 41 Toán 10 tập 2 Kết nối tri...

Mục 3 trang 40, 41 Toán 10 tập 2 Kết nối tri thức: Cho điểm (Mleft( {{x_o};{y_0}} right)) và đường thẳng (Delta :{rm{a}}x + by +...

Giải mục 3 trang 40, 41 SGK Toán 10 tập 2 - Kết nối tri thức - Bài 20. Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách

HĐ4

Cho điểm \(M\left( {{x_o};{y_0}} \right)\) và đường thẳng \(\Delta :{\rm{a}}x + by + c = 0\) có vecto pháp tuyến \(\overrightarrow n  = \left( {{\rm{a }};{\rm{ b}}} \right)\left( {\overrightarrow n  \ne 0} \right)\)

Gọi H là hình chiếu vuông góc của M trên \(\Delta \).

a) Chưng minh rằng \(\left| {\overrightarrow n .\overrightarrow {HM} } \right| = \sqrt {{a^2} + {b^2}} .HM\)

b) Giả sử H có tọa độ \(\left( {{x_1};{y_1}} \right)\). Chứng minh rằng \(\overrightarrow n .\overrightarrow {HM}  = a\left( {{x_o} - {x_1}} \right) + b\left( {{y_o} - {y_1}} \right) = a{x_o} + b{y_o} + c\)

c) Chứng minh rằng \(HM = \frac{{\left| {{\rm{a}}{x_o} + b{y_o} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\) 

Answer - Lời giải/Đáp án

a) Ta có: \(\left| {\overrightarrow n .\overrightarrow {HM} } \right| = \left| {\overrightarrow n } \right|.\left| {\overrightarrow {HM} } \right|.\left| {\cos \left( {\overrightarrow n ,\overrightarrow {HM} } \right)} \right| = \sqrt {{a^2} + {b^2}} .HM.1 = \sqrt {{a^2} + {b^2}} .HM\)

b) Ta có : \(\overrightarrow n  = \left( {{\rm{a }};{\rm{ b}}} \right)\left( {\overrightarrow n  \ne 0} \right){\rm{ ,}}\overrightarrow {HM}  = \left( {{x_1} - {x_o};{y_1} - {y_o}} \right) \Rightarrow \overrightarrow n .\overrightarrow {HM}  = a\left( {{x_o} - {x_1}} \right) + b\left( {{y_o} - {y_1}} \right) = a{x_o} + b{y_o} + c\) trong đó \(a{x_1} + b{y_1} = c\).

c) Ta có: \(\left| {\overrightarrow n .\overrightarrow {HM} } \right| = \left| {\overrightarrow n } \right|.\left| {\overrightarrow {HM} } \right|.\left| {\cos \left( {\overrightarrow n ,\overrightarrow {HM} } \right)} \right| \Leftrightarrow \left| {a{x_o} + b{y_o} + c} \right| = \sqrt {{a^2} + {b^2}} .HM \Rightarrow HM = \frac{{\left| {a{x_o} + b{y_o} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)

Trải nghiệm

Đo trực tiếp khoảng cách từ điểm M đến đường thẳng A(H7.10) và giải thích vì sao kết quả đo đạc đó phù hợp với kết quả tính toán trong lời giải của Ví dụ 4.

Answer - Lời giải/Đáp án

Khoảng cách từ M đến đường thẳng \(\Delta \) chính là độ dài đoạn MH trong đó H là hình chiếu từ M xuống \(\Delta \).

Gọi các điểm A, B, C, D như hình vẽ.

Ta có: \(OA = 3,OB = 4  \Rightarrow AB =5 \)

\(DB = 2 = \frac{1}{2}OB \Rightarrow CD = \frac{1}{2}OA = 1,5 \Rightarrow MC = 4 - 1,5 = 2,5.\)

Lại có: \(\widehat {MCH} = \widehat {BCD} = \widehat {BAO}\)

Mà: \(\sin \widehat {MCH} = \frac{{MH}}{{MC}};\sin \widehat {BAO} = \frac{{OB}}{{AB}} = \frac{4}{5}\)

\( \Rightarrow \frac{{MH}}{{2,5}} = \frac{4}{5} \Leftrightarrow MH = 2\)

Do đó kết quả đo đạc phù hợp với kết quả tính toán trong lời giải ở Ví dụ 4.

Luyện tập 5

Tính khoảng cách từ điểm \(M\left( {1;2} \right)\) đến đường thẳng\(\Delta :\left\{ \begin{array}{l}x = 5 + 3t\\y =  - 5 - 4t\end{array} \right.\).

Advertisements (Quảng cáo)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Bước 1: Đưa pt về dạng PT tổng quát

Bước 2: Khoảng cách từ \(M({x_0};{y_0})\) đến \(\Delta :ax + by + c = 0\) là:

\(d(M,\Delta ) = \frac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)

Answer - Lời giải/Đáp án

Ta có: 

\(\left\{ {\begin{array}{*{20}{l}}
{x = 5 + 3t}\\
{y = - 5 - 4t}
\end{array}} \right. \Rightarrow 4x + 3y = 4(5 + 3t) + 3( - 5 - 4t) = 5\)

Phương trình tổng quát của \(\Delta \) là \(4x + 3y - 5 = 0\)

Khoảng cách từ M đến đường thẳng \(\Delta \) là \(d\left( {M,\Delta } \right) = \frac{{\left| {4.1 + 3.2 - 5} \right|}}{{\sqrt {{4^2} + {3^2}} }} = 1\).

Vận dụng

Nhân dịp nghỉ hè, Nam về quê ở với ông bà nội. Nhà ông bà nội có một ao cá có dạng hình chữ nhật ABCD với chiều dài AD = 15 m, chiều rộng AB = 12 m. Phần tam giác DEF là nơi ông bà nuôi vịt, AE = 5 m, CF = 6 m (H.7.11).

a) Chọn hệ trục toạ độ Oxy, có điểm O trùng vớiđiểm B, các tia Ox, Oy tương ứng trùng với các tia BC, BA. Chọn 1 đơn vị độ dài trên mặt phẳng toạ độ tương ứng với 1 m trong thực tế. Hãy xác định toạ độ của các điểm A, B, C, D,E, F và viết phương trình đường thẳng EF.

b) Nam đứng ở vị trí B câu cá và có thể quănglưỡi câu xa 10,7 m. Hỏi lưỡi câu có thể rơi vào nơi nuôi vịt hay không?

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Viết phương trình tổng quát của EF, sau đó tính khoảng cách từ B đến EF rồi so sánh với 10,7.

Answer - Lời giải/Đáp án

a) Tọa độ các điểm là: \(B\left( {0;0} \right),A\left( {0;12} \right),C\left( {15;0} \right),D\left( {15;12} \right),E\left( {5;12} \right),F\left( {15;6} \right)\).

Ta có: \(\overrightarrow {EF}  = \left( {10; - 6} \right) \Rightarrow \overrightarrow {{n_{EF}}}  = \left( {3;5} \right)\). Phương trình tổng quát của EF là: \(3\left( {x - 5} \right) + 5\left( {y - 12} \right) = 0 \Leftrightarrow 3x + 5y - 75 = 0\).

b) Khoảng cách từ điểm B đến đường thẳng EF là: \(d\left( {B,EF} \right) = \frac{{\left| {3.0 + 5.0 - 75} \right|}}{{\sqrt {{3^2} + {5^2}} }} \approx 12,9\left( m \right)\).

Mặt khác, Nam có thể quăng lưới câu xa 10,7m. Do đó lưỡi câu của Nam không thể rơi vào nơi nuôi vịt được.

Advertisements (Quảng cáo)