Giả sử \(\sin \alpha = t\), với \(\frac{\pi }{2}
a) \(\sin \left( {\alpha + \pi } \right)\);
b) \(\sin \left( {\alpha - \pi } \right)\);
c) \(\sin \left( {\frac{\pi }{2} - \alpha } \right)\);
d) \(\tan \left( {3\pi + \alpha } \right)\).
Áp dụng các hệ thức của hai góc lượng giác có liên quan đặc biệt và hệ thức cơ bản giữa các giá trị lượng giác.
Advertisements (Quảng cáo)
a) \(\sin \left( {\alpha + \pi } \right) = - \sin \alpha = - t\)
b) \(\sin \left( {\alpha - \pi } \right) = - \sin \alpha = - t\)
c) \(\sin \left( {\frac{\pi }{2} - \alpha } \right) = \cos \alpha \)
\({\cos ^2}\alpha = 1 - {\sin ^2}\alpha = 1 - {t^2}\)
Vì \(\frac{\pi }{2}
\( \Rightarrow \cos \alpha = - \sqrt {1 - {t^2}} \)\( \Rightarrow \sin \left( {\frac{\pi }{2} - \alpha } \right) = - \sqrt {1 - {t^2}} \)
d) \(\tan \left( {3\pi + \alpha } \right) = \tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{t}{{ - \sqrt {1 - {t^2}} }}\).