\(\mathop {\lim }\limits_{x \to - \infty } \frac{{2 - x + {x^2}}}{x}\) là
A. \( - \infty .\)
B. \( + \infty .\)
C. \(0.\)
D. \(1.\)
Đây là giới hạn của hàm số tại vô cực
Thực hiện chia cả tử và mẫu số cho lũy thừa của \(x\) với số mũ lớn nhất
Advertisements (Quảng cáo)
Áp dụng các công thức sau: \(\mathop {\lim }\limits_{x \to + \infty } \frac{c}{{{x^k}}} = 0;\,\mathop {\lim }\limits_{x \to - \infty } \frac{c}{{{x^k}}} = 0\)
Chia cả tử và mẫu của hàm số cho \({x^2}\) ta được
\(\mathop {\lim }\limits_{x \to - \infty } \frac{{2 - x + {x^2}}}{x} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\frac{2}{{{x^2}}} - \frac{1}{x} + 1}}{{\frac{1}{x}}}\)
Ta có \(\mathop {\lim }\limits_{x \to - \infty } \left( {\frac{2}{{{x^2}}} - \frac{1}{x} + 1} \right) = 1 > 0\)
Khi \(x \to - \infty \) thì \(\mathop {\lim }\limits_{x \to - \infty } \frac{1}{x} = 0\) và \(\frac{1}{x}
Vậy \(\mathop {\lim }\limits_{x \to - \infty } \frac{{2 - x + {x^2}}}{x} = - \infty \)
Đáp án A