Hoạt động 1
a) Một nhà vua Ấn Độ quyết định ban thưởng cho người phát minh ra cờ vua theo nguyện vọng của người đó. Ông ta xin nhà vua một số thóc để mang tặng người nghèo, số thóc được đặt trên bàn cờ vua có 64 ô đã được đánh số từ 1 đến 64 như sau: đặt vào ô số một một hạt, ô số hai hai hạt, ô số ba bốn hạt,... Cứ như vậy, số hạt thóc ở ô sau gấp đôi ô liền trước cho đến ô cuối cùng.
Nếu gọi \({u_n}\) là số hạt thóc được đặt vào ô số \(n\), hãy tìm các giá trị của \({u_n}\) tương ứng với \(n\) đã cho trong bảng sau:
b) Với mỗi số nguyên dương \(n\), ta gọi \({v_n}\) là số nghịch đảo của \(n\). Hãy tìm các giá trị của \({v_n}\) tương ứng với \(n\) đã cho trong bảng sau:
a) Đọc để để tìm \({u_n}\)
b) Số nghịch đảo \({v_n} = \frac{1}{n}\)
a) Ta có:
\(\begin{array}{l}{u_1} = 1 = {2^0} ;\\{u_2} =2 = {2^1}= {2^{2 - 1}} ;\\{u_3} = 4= {2^2}= {2^{3 - 1}} ;\\{u_4}= 8 = {2^3} = {2^{4 - 1}} ;\\{u_5} = 16= {2^4}= {2^{5 - 1}} ;\\{u_6}= 32= {2^5} = {2^{6 - 1}} ;\\...\\{u_{64}} = {2^{63}}= {2^{64 - 1}} \end{array}\)
Advertisements (Quảng cáo)
Vậy \({u_n} = {2^{n - 1}}\).
b) \({v_n}\) là số nghịch đảo của \(n\), ta có: \({v_n} = \frac{1}{n}\)
\({v_1} = \frac{1}{1} = 1;{v_2} = \frac{1}{2};{v_3} = \frac{1}{3};{v_4} = \frac{1}{4};...;{v_{100}} = \frac{1}{{100}};...;{v_n} = \frac{1}{n}\)
Luyện tập 1
Cho \(\left( {{p_n}} \right)\) là dãy số, trong đó \({p_n}\) là số nguyên tố thứ \(n\). Xác định \({p_2}\), \({p_5}\), \({p_9}\).
- Số nguyên tố là các số tự nhiên lớn hơn 1, chỉ chia hết cho 1 và chính nó.
- Liệt kê các số nguyên tố từ nhỏ đến lớn.
Dạng khai triển của dãy \(\left( {{p_n}} \right)\) là 2, 3, 5, 7, 11, 13, 17, 19, 23 ... trong đó \({p_2} = 3\), \({p_5} = 11\), \({p_9} = 23\).