Trang chủ Lớp 11 SGK Toán 11 - Cùng khám phá Mục 3 trang 47, 48, 49 Toán 11 tập 1 – Cùng...

Mục 3 trang 47, 48, 49 Toán 11 tập 1 - Cùng khám phá: Cho hai dãy số \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\) mà \({u_n} = 1 + \frac{1}{n}\) và \({v_n} =...

Thay n = n + 1 vào công thức tổng quát của dãy số. So sánh \({u_{n + 1}} - {u_n}\), \({v_{n + 1}} - {v_n}\) với 0. Giải chi tiết Hoạt động 6, Luyện tập 5 , Hoạt động 7 , Luyện tập 6 , Vận dụng - mục 3 trang 47, 48, 49 SGK Toán 11 tập 1 - Cùng khám phá - Bài 1. Dãy số. Cho hai dãy số \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\) mà \({u_n} = 1 + \frac{1}{n}\) và \({v_n} = 2 - \frac{1}{n}\) (n là số nguyên dương)...

Hoạt động 6

Cho hai dãy số \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\) mà \({u_n} = 1 + \frac{1}{n}\) và \({v_n} = 2 - \frac{1}{n}\) (n là số nguyên dương).

a) So sánh \({u_{n + 1}}\) và \({u_n}\).

b) So sánh \({v_{n + 1}}\) và \({v_n}\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Thay n = n + 1 vào công thức tổng quát của dãy số. So sánh \({u_{n + 1}} - {u_n}\), \({v_{n + 1}} - {v_n}\) với 0.

Answer - Lời giải/Đáp án

a) Ta có: \({u_{n + 1}} - {u_n} = 1 + \frac{1}{{n + 1}} - 1 - \frac{1}{n} = \frac{1}{{n + 1}} - \frac{1}{n} = \frac{{n - \left( {n + 1} \right)}}{{n\left( {n + 1} \right)}} = \frac{ -1}{{n\left( {n + 1} \right)}}\)

Mà n là số nguyên dương nên \(\frac{ -1}{{n\left( {n + 1} \right)}}

b) Ta có: \({v_{n + 1}} - {v_n} = 2 - \frac{1}{{n + 1}} - 2 + \frac{1}{n} = \frac{1}{n} - \frac{1}{{n + 1}} = \frac{{n + 1 - n}}{{n\left( {n + 1} \right)}} = \frac{1}{{n\left( {n + 1} \right)}}\)

Mà n là số nguyên dương nên \(\frac{1}{{n\left( {n + 1} \right)}} > 0 \Rightarrow {v_{n + 1}} - {v_n} > 0 \Rightarrow {v_{n + 1}} > {v_n}\).


Luyện tập 5

Chứng minh rằng dãy số \(\left( {{u_n}} \right)\) cho bởi \({u_n} = \frac{{n - 2}}{{3n - 1}},\forall n \in {\mathbb{N}^*}\) là một dãy số tăng.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

So sánh \({u_{n + 1}}\) và \({u_n}\). Nếu \({u_{n + 1}} > {u_n}\forall n\) thì là dãy số tăng.

Answer - Lời giải/Đáp án

\(\begin{array}{l}{u_{n + 1}} = \frac{{n + 1 - 2}}{{3(n + 1) - 1}} = \frac{{n - 1}}{{3n + 2}}\\{u_{n + 1}} - {u_n} = \frac{{n - 1}}{{3n + 2}} - \frac{{n - 2}}{{3n - 1}} = \frac{5}{{9{n^2} + 3n - 2}}\\9{n^2} + 3n - 2 > 0\forall n \ge 1 \Rightarrow \frac{5}{{9{n^2} + 3n - 2}} > 0\\ \Rightarrow {u_{n + 1}} - {u_n} > 0\end{array}\)

\(\Rightarrow {u_{n + 1}} > {u_n}\forall n\)

Vậy dãy số đã cho là một dãy số tăng.


Hoạt động 7

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{\sqrt n }}{{n + 1}}\)

a) So sánh n + 1 và \(2\sqrt n \) .

b) Suy ra: \({u_n} \le \frac{1}{2}\), với mọi số nguyên dương n.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) So sánh \(n + 1 - 2\sqrt n \) với 0.

b) Áp dụng phần a.

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

a) \(n + 1 - 2\sqrt n = {\left( {\sqrt n - 1} \right)^2} \ge 0\forall n \Rightarrow n + 1 \ge 2\sqrt n \)

b) \(n + 1 \ge 2\sqrt n \Rightarrow \frac{{\sqrt n }}{{n + 1}} \le \frac{{\sqrt n }}{{2\sqrt n }} = \frac{1}{2} \Rightarrow {u_n} = \frac{1}{2}\forall n\) nguyên dương


Luyện tập 6

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{n - 1}}{{n + 2}}\), với n là số nguyên dương.

a) Chứng minh rằng dãy số \(\left( {{u_n}} \right)\) tăng.

b) Chứng minh rằng dãy số \(\left( {{u_n}} \right)\) bị chặn.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) So sánh \({u_{n + 1}}\) và \({u_n}\). Nếu \({u_{n + 1}} > {u_n}\forall n\) thì là dãy số tăng.

b) Dãy số \(\left( {{u_n}} \right)\) bị chặn khi \(m \le {u_n} \le M\forall n\) nguyên dương.

Answer - Lời giải/Đáp án

a)

\(\begin{array}{l}{u_n} = \frac{{n - 1}}{{n + 2}} = 1 - \frac{3}{{n + 2}}\\{u_{n + 1}} - {u_n} = 1 - \frac{3}{{n + 3}} - \left( {1 - \frac{3}{{n + 2}}} \right) = \frac{3}{{n + 2}} - \frac{3}{{n + 3}} = 3\left( {\frac{1}{{n + 2}} - \frac{1}{{n + 3}}} \right)\\n + 2 \frac{1}{{n + 3}} \Leftrightarrow \frac{1}{{n + 2}} - \frac{1}{{n + 3}} > 0 \Leftrightarrow 3\left( {\frac{1}{{n + 2}} - \frac{1}{{n + 3}}} \right) > 0\\ \Rightarrow {u_{n + 1}} - {u_n} > 0 \Leftrightarrow {u_{n + 1}} > {u_n}\end{array}\)

Vậy dãy số đã cho là dãy số tăng.

b) n là số nguyên dương \( \Rightarrow n \ge 1 \Leftrightarrow \left\{ \begin{array}{l}n - 1 \ge 0\\n + 2 > 0\end{array} \right. \Leftrightarrow \frac{{n - 1}}{{n + 2}} \ge 0\)

\(n - 1

\( \Rightarrow 0 \le \frac{{n - 1}}{{n + 2}}

Vậy dãy số đã cho là dãy số bị chặn.


Vận dụng

Trong một trò chơi của trẻ em, các em nhỏ dùng các viên bi để xếp thành các hình tam giác Fn. Dãy các hình xếp (Fn) tuân theo một quy luật được mô tả trong Hình 2.2. Trong đó F1 chỉ có 1 viên bi, thêm 2 viên bi để được tam giác đều là hình F2, thêm 3 viên bi thẳng hàng và song song với một cạnh của F2 để được tam giác đều F3,… Gọi (un) là dãy số mà un là số viên bi cần dùng để xếp được hình Fn \(\left( {n \in {\mathbb{N}^*}} \right)\). Chẳng hạn \({u_1} = 1,{u_2} = 3,{u_3} = 6\),…

a) Viết sáu số hạng đầu tiên của dãy số (un).

b) Dự đoán công thức truy hồi để tính un.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Số hạng đứng sau hơn số hạng đứng trước đúng một số bằng số thứ tự của số hạng đứng sau.

Answer - Lời giải/Đáp án

a) \({u_1} = 1,{u_2} = 3,{u_3} = 6,{u_4} = 6 + 4 = 10,{u_5} = 10 + 5 = 15,{u_6} = 15 + 6 = 21\)

b) Công tính truy hồi: \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = {u_n} + n + 1\end{array} \right.\)

Advertisements (Quảng cáo)