Sử dụng tính chất của tích phân \(\int\limits_a^b {\left( {f(x) + g(x)} \right)} dx = \int\limits_a^b {f(x)} dx + \int\limits_a^b {g(x)} dx\). Hướng dẫn cách giải/trả lời Giải bài tập 3 trang 42 SGK Toán 12 tập 2 - Cánh diều - Bài tập cuối chương 4 . Biết \(\int\limits_0^1 {[f(x) + 2x]dx = 2} \). Khi đó, \(\int\limits_0^1 {f(x)dx} \) bằng: A. 1 B. 4 C.
Câu hỏi/bài tập:
Biết \(\int\limits_0^1 {[f(x) + 2x]dx = 2} \). Khi đó, \(\int\limits_0^1 {f(x)dx} \) bằng:
A. 1
B. 4
C. 2
Advertisements (Quảng cáo)
D. 0
Sử dụng tính chất của tích phân \(\int\limits_a^b {\left( {f(x) + g(x)} \right)} dx = \int\limits_a^b {f(x)} dx + \int\limits_a^b {g(x)} dx\)
\(\int\limits_0^1 {[f(x) + 2x]dx} = \int\limits_0^1 {f(x)dx} + \int\limits_0^1 {2xdx} = \int\limits_0^1 {f(x)dx} + \left. {{x^2}} \right|_0^1 = 2 \Leftrightarrow \int\limits_0^1 {f(x)dx} = 1\)
Chọn A