Trang chủ Lớp 12 SGK Toán 12 - Cánh diều Bài tập 4 trang 42 Toán 12 tập 2 – Cánh diều:...

Bài tập 4 trang 42 Toán 12 tập 2 - Cánh diều: Tìm \(\int {2x({x^3}} - x + 2)dx\) \(\int {\left( {2x + \frac{1}{{{x^3}}}} \right)} dx\) c) \(\int {\left( {3 + 2{{\tan...

Cho hàm số f(x) xác định trên K. Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F’(x) =. Vận dụng kiến thức giải Giải bài tập 4 trang 42 SGK Toán 12 tập 2 - Cánh diều - Bài tập cuối chương 4 . Tìm a) \(\int {2x({x^3}} - x + 2)dx\) b) \(\int {\left( {2x + \frac{1}{{{x^3}}}} \right)} dx\) c) \(\int {\left( {3

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Tìm

a) \(\int {2x({x^3}} - x + 2)dx\)

b) \(\int {\left( {2x + \frac{1}{{{x^3}}}} \right)} dx\)

c) \(\int {\left( {3 + 2{{\tan }^2}x} \right)} dx\)

d) \(\int {\left( {1 - 3{{\cot }^2}x} \right)} dx\)

e) \(\int {\left( {\sin + {2^{ - x + 1}}} \right)} dx\)

g) \(\int {\left( {{{2.6}^{2x}} - {e^{ - x + 1}}} \right)} dx\)

Advertisements (Quảng cáo)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Cho hàm số f(x) xác định trên K. Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F’(x) = f(x) với mọi x thuộc K

Answer - Lời giải/Đáp án

a) \(\int {2x({x^3}} - x + 2)dx = \int {\left( {2{x^3} - 2{x^2} + 4x} \right)} dx = \frac{{{x^2}}}{2} - \frac{{2{x^3}}}{3} + 2{x^2} + C\)

b) \(\int {\left( {2x + \frac{1}{{{x^3}}}} \right)} dx = {x^2} - \frac{1}{{2{x^2}}} + C\)

c) \(\int {\left( {3 + 2{{\tan }^2}x} \right)} dx = \int {\left( {1 + 2(1 + {{\tan }^2}x)} \right)} dx = \int {(1 + } \frac{2}{{{{\cos }^2}x}})dx = x + 2\tan x + C\)

d) \(\int {\left( {1 - 3{{\cot }^2}x} \right)} dx = \int {(4 - 3(1 + {{\cot }^2}} x))dx = \int {\left( {4 - \frac{3}{{{{\sin }^2}x}}} \right)dx = 4x + 3\cot x + C} \)

e) \(\int {\left( {\sin + {2^{ - x + 1}}} \right)} dx = - \cos x - \frac{{{2^{ - x + 1}}}}{{\ln 2}} + C\)

g) \(\int {\left( {{{2.6}^{2x}} - {e^{ - x + 1}}} \right)} dx = \frac{{{6^{2x}}}}{{\ln 6}} - {e^{ - x + 1}} + C\)

Advertisements (Quảng cáo)