Trang chủ Lớp 12 SGK Toán 12 - Cánh diều Bài tập 8 trang 16 Toán 12 tập 2 – Cánh diều:...

Bài tập 8 trang 16 Toán 12 tập 2 - Cánh diều: Một quần thể vi khuẩn ban đầu gồm 500 vi khuẩn, sau đó bắt đầu tăng trưởng...

Tìm hàm số biểu diễn số lượng vi khuẩn thông qua hàm số tốc độ tăng trưởng của quần thể. Phân tích, đưa ra lời giải Giải bài tập 8 trang 16 SGK Toán 12 tập 2 - Cánh diều - Bài 2. Nguyên hàm của một số hàm số sơ cấp . Một quần thể vi khuẩn ban đầu gồm 500 vi khuẩn, sau đó bắt đầu tăng trưởng.

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Một quần thể vi khuẩn ban đầu gồm 500 vi khuẩn, sau đó bắt đầu tăng trưởng. Gọi P(t) là số lượng vi khuẩn của quần thể đó tại thời điểm t, trong đó t tính theo ngày \((0 \le t \le 10)\). Tốc độ tăng trưởng của quần thể vi khuẩn đó cho bởi hàm số \(P'(t) = k\sqrt t \), trong đó k là hằng số. Sau 1 ngày, số lượng vi khuẩn của quần thể đó đã tăng lên thành 600 vi khuẩn. Tính số lượng vi khuẩn của quần thể đó sau 7 ngày (làm tròn kết quả đến hàng đơn vị).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Tìm hàm số biểu diễn số lượng vi khuẩn thông qua hàm số tốc độ tăng trưởng của quần thể

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

\(\int {P'(t)} dt = \int {k\sqrt t dt} = \frac{2}{3}k\sqrt {{t^3}} + C = P(t)\)

\(P(0) = \frac{2}{3}k\sqrt {{0^3}} + C = 500 \Rightarrow C = 500\)

\(P(1) = \frac{2}{3}k\sqrt {{1^3}} + 500 = 600 \Rightarrow k = 150\)

Vậy số lượng vi khuẩn của quần thể đó được biểu diễn bởi hàm số \(P(t) = 100\sqrt {{t^3}} + 500\)

Số lượng vi khuẩn của quần thể đó sau 7 ngày là: \(P(7) = 100\sqrt {{7^3}} + 500 = 2352\) (con)

Advertisements (Quảng cáo)