Trang chủ Lớp 12 SGK Toán 12 - Cánh diều Cho hàm số (f(x) = {x^2}) a) Chứng tỏ (F(x) = frac{{{x^3}}}{3}),...

Cho hàm số \(f(x) = {x^2}\) a) Chứng tỏ \(F(x) = \frac{{{x^3}}}{3}\), \(G(x) = \frac{{{x^3}}}{3} + C\) là các nguyên hàm của hàm số \(f(x) = {x^2}\) b) Chứng minh...

Cho hàm số f(x) xác định trên K. Hướng dẫn giải Câu hỏi Hoạt động 2 trang 20 SGK Toán 12 Cánh diều - Bài 3. Tích phân.

Câu hỏi/bài tập:

Cho hàm số \(f(x) = {x^2}\)

a) Chứng tỏ \(F(x) = \frac{{{x^3}}}{3}\), \(G(x) = \frac{{{x^3}}}{3} + C\) là các nguyên hàm của hàm số \(f(x) = {x^2}\)

b) Chứng minh rằng \(F(b) - F(a) = G(b) - G(a)\), tức là hiệu số \(F(b) - F(a)\) không phụ thuộc việc chọn nguyên hàm

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Cho hàm số f(x) xác định trên K. Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F’(x) = f(x) với mọi x thuộc K

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

a) \(F'(x) = G'(x) = {x^2} = f(x)\) nên \(F(x) = \frac{{{x^3}}}{3}\), \(G(x) = \frac{{{x^3}}}{3} + C\) là các nguyên hàm của hàm số \(f(x) = {x^2}\)

b) \(F(b) - F(a) = \frac{{{b^3}}}{3} - \frac{{{a^3}}}{3}\)

\(G(b) - G(a) = \frac{{{b^3}}}{3} + C - \frac{{{a^3}}}{3} - C = \frac{{{b^3}}}{3} - \frac{{{a^3}}}{3}\)

=> \(F(b) - F(a) = G(b) - G(a)\)

Advertisements (Quảng cáo)