Cho 2 đường thẳng song song c và d. Chứng minh rằng khoảng cách từ mọi điểm thuộc c đến đường thẳng d bằng nhau và bằng khoảng cách từ mọi điểm thuộc đường thẳng d đến đường thẳng c (khoảng cách đó được gọi là khoảng cách giữa hai đường thẳng song song c và d).
-Lấy M, M’ thuộc c (M khác M’), kẻ MH, M’H’ vuông góc với d.
-Chứng minh: MH = H’M’ (\(\Delta MHH’\)=\(\Delta H’M’M\))
Advertisements (Quảng cáo)
Lấy M, M’ thuộc c (M khác M’), kẻ MH, M’H’ vuông góc với d.
\( \Rightarrow MH\parallel M’H’\)
Xét \(\Delta MHH’\) và \(\Delta H’M’M\)có:
MH’: chung
\(\begin{array}{l}\widehat {{M_1}} = \widehat {H{‘_2}}\left( {so\,le\,trong} \right)\\\widehat {{M_2}} = \widehat {H{‘_1}}\left( {so\,le\,trong} \right)\\ \Rightarrow \Delta MHH’ = \Delta H’M’M\left( {g - c - g} \right)\\ \Rightarrow MH = H’M’\end{array}\) Vậy khoảng cách từ mọi điểm thuộc c đến đường thẳng d bằng nhau và bằng khoảng cách từ mọi điểm thuộc đường thẳng d đến đường thẳng c.