Tính:
a) \( - 2{x^2} + 6{x^2}\); b) \(4{x^3} - 8{x^3}\);
c) \(3{x^4}( - 6{x^2})\); d) \(( - 24{x^6}):( - 4{x^3})\).
Với phép cộng (trừ) các đơn thức có cùng biến và lũy thừa của biến, ta giữ nguyên biến và số mũ lũy thừa của nó rồi thực hiện phép tính (cộng, trừ) giữa các hệ số đi cùng.
Với phép nhân (chia) các đơn thức, ta nhân (chia) hệ số của các biến với nhau, và nhân (chia) biến với nhau:
Advertisements (Quảng cáo)
\({x^m}.{x^n} = {x^{m + n}};{x^m}:{x^n} = {x^{m - n}}\) (với m > n).
a) \( - 2{x^2} + 6{x^2} = ( - 2 + 6).{x^2} = 4{x^2}\);
b) \(4{x^3} - 8{x^3} = (4 - 8).{x^3} = - 4{x^3}\);
c) \(3{x^4}( - 6{x^2}) = 3.( - 6).{x^4}.{x^2} = - 18{x^{4 + 2}} = - 18{x^6}\);
d) \(( - 24{x^6}):( - 4{x^3}) = ( - 24: - 4).({x^6}:{x^3}) = 6{x^{6 - 3}} = 6{x^3}\).