Trang chủ Lớp 8 SBT Toán 8 - Chân trời sáng tạo Bài 5 trang 45 SBT Toán 8 – Chân trời sáng tạo...

Bài 5 trang 45 SBT Toán 8 - Chân trời sáng tạo tập 2: Cho tam giác ABC có M, N lần lượt là trung điểm của AC, BC...

Sử dụng kiến thức về đường trung bình của tam giác để chứng minh. Hướng dẫn cách giải/trả lời bài 5 trang 45 sách bài tập toán 8 - Chân trời sáng tạo tập 2 - Bài 2. Đường trung bình của tam giác. Cho tam giác ABC có M, N lần lượt là trung điểm của AC, BC....

Question - Câu hỏi/Đề bài

Cho tam giác ABC có M, N lần lượt là trung điểm của AC, BC.

a) Chứng minh tứ giác AMNB là hình thang.

b) Gọi I là giao điểm của AN và BM. Trên tia đối của tia NA lấy điểm E sao cho \(NE = NI\). Trên tia đối của tia MB lấy điểm F sao cho \(MF = MI\). Chứng minh EF//AB.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

+ Sử dụng kiến thức về đường trung bình của tam giác để chứng minh: Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.

Advertisements (Quảng cáo)

+ Sử dụng kiến thức về tính chất của đường trung bình của tam giác để chứng minh: Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

Answer - Lời giải/Đáp án

a) Xét tam giác ABC có: \(MA = MC,NB = NC\) nên MN là đường trung bình của tam giác ABC, suy ra MN//AB, suy ra tứ giác AMNB là hình thang.

b) Xét tam giác IEF có: \(NE = NI\), \(MF = MI\) nên MN là đường trung bình của tam giác EIF, suy ra MN//EF

Mà MN//AB, suy ra EF//AB.

Advertisements (Quảng cáo)