Cho biểu thức:
\(A = \left( {\dfrac{{x + 1}}{{2{\rm{x}} - 2}} + \dfrac{3}{{{x^2} - 1}} - \dfrac{{x + 3}}{{2{\rm{x}} + 2}}} \right).\dfrac{{4{{\rm{x}}^2} - 4}}{5}\)
a) Viết điều kiện xác định của biểu thức A
b) Chứng minh giá trị của biểu thức A không phụ thuộc vào giá trị của biến.
Điều kiện xác định của phân thức là mẫu thức khác 0.
Thực hiện quy đồng mẫu các phân thức để tính toán rút gọn biểu thức A không chứa giá trị của biến.
Advertisements (Quảng cáo)
a)
\(\begin{array}{l}A = \left( {\dfrac{{x + 1}}{{2{\rm{x}} - 2}} + \dfrac{3}{{{x^2} - 1}} - \dfrac{{x + 3}}{{2{\rm{x}} + 2}}} \right).\dfrac{{4{{\rm{x}}^2} - 4}}{5}\\A = \left[ {\dfrac{{x + 1}}{{2\left( {x - 1} \right)}} + \dfrac{3}{{\left( {x - 1} \right)\left( {x + 1} \right)}} - \dfrac{{x + 3}}{{2\left( {x + 1} \right)}}} \right].\dfrac{{4\left( {{x^2} - 1} \right)}}{5}\end{array}\)
Điều kiện xác định của biểu thức A là: \(x + 1 \ne 0;x - 1 \ne 0\)
b)
\(\begin{array}{l}A = \left( {\dfrac{{x + 1}}{{2{\rm{x}} - 2}} + \dfrac{3}{{{x^2} - 1}} - \dfrac{{x + 3}}{{2{\rm{x}} + 2}}} \right).\dfrac{{4{{\rm{x}}^2} - 4}}{5}\\A = \left[ {\dfrac{{x + 1}}{{2\left( {x - 1} \right)}} + \dfrac{3}{{\left( {x - 1} \right)\left( {x + 1} \right)}} - \dfrac{{x + 3}}{{2\left( {x + 1} \right)}}} \right].\dfrac{{4\left( {{x^2} - 1} \right)}}{5}\\A = \dfrac{{\left( {x + 1} \right)\left( {x + 1} \right) - 3.2 - \left( {x + 3} \right)\left( {x - 1} \right)}}{{2\left( {x - 1} \right)\left( {x + 1} \right)}}.\dfrac{{4\left( {x - 1} \right)\left( {x + 1} \right)}}{5}\\A = \dfrac{{{x^2} + 2{\rm{x}} + 1 - 6 - {x^2} - 2{\rm{x + 3}}}}{{2\left( {x - 1} \right)\left( {x + 1} \right)}}.\dfrac{{4\left( {x - 1} \right)\left( {x + 1} \right)}}{5}\\A = \dfrac{{10.4}}{{2.5}} = 4\end{array}\)
Vậy giá trị của A = 4 không phụ thuộc vào các giá trị của biến