Hoạt động1
Xét hai biểu thức: \(P = 2\left( {x + y} \right)\) và \(Q = 2{\rm{x}} + 2y\)
Tính giá trị của mỗi biểu thức P và Q rồi so sánh hai giá trị đó trong mỗi trường hợp sau:
a) Tại x = 1; y = -1
b) Tại x = 2; y = -3
Thay các giá trị đã cho của x, y vào mỗi biểu thức P, Q rồi tính kết quả.
a) * Thay x = 1; y = -1 vào biểu thức P ta được:
\(P = 2.\left[ {1 + \left( { - 1} \right)} \right] = 0\)
Thay x = 1; y = -1 vào biểu thức Q ta được:
\(Q = 2.1 + 2.\left( { - 1} \right) = 0\)
\(\Rightarrow\) Tại x = 1; y = -1, P = Q.
Advertisements (Quảng cáo)
b) * Thay x = 2; y = 3 vào biểu thức P ta được:
\(P = 2.\left( {2 + 3} \right) = 10\)
* Thay x = 2; y = 3 vào biểu thức Q ta được:
\(Q = 2.2 + 2.3 = 10\)
\(\Rightarrow\) Tại x = 2; y = 3, P = Q.
Luyện tập 1
Chứng minh rằng: \(x\left( {x{y^2} + y} \right) - y\left( {{x^2}y + x} \right) = 0\).
Rút gọn các biểu thức ở vế trái ta được biểu thức cần chứng minh.
Ta có: \(\begin{array}{l}x\left( {x{y^2} + y} \right) - y\left( {{x^2}y + x} \right)\\ = x.x{y^2} + xy - y.{x^2}y - {\rm{yx}}\\ = {x^2}{y^2} + xy - {x^2}{y^2} - xy = \left( {{x^2}{y^2} - {x^2}{y^2}} \right) + \left( {xy - xy} \right) = 0\end{array}\)
Vậy \(x\left( {x{y^2} + y} \right) - y\left( {{x^2}y + x} \right) = 0\) (đpcm)