Câu hỏi/bài tập:
Cho biểu thức \(P = 5x\left( {3{x^2}y-2x{y^2}\; + 1} \right)-3xy\left( {5{x^2}\;-3xy} \right) + {x^2}{y^2}\).
a) Bằng cách thu gọn, chứng tỏ rằng giá trị của biểu thức P chỉ phụ thuộc vào biến x mà không phụ thuộc vào biến y.
b) Tìm giá trị của x sao cho P = 10.
a) Sử dụng quy tắc nhân đơn thức với đa thức.
Advertisements (Quảng cáo)
b) Sử dụng quy tắc nhân đơn thức với đơn thức.
a) Thu gọn P:
\(\begin{array}{*{20}{l}}{P = 5x\left( {3{x^2}y-2x{y^2}\; + 1} \right)-3xy\left( {5{x^2}\;-3xy} \right) + {x^2}{y^2}}\\{ = 15{x^3}y-10{x^2}{y^2}\; + 5x-15{x^3}y + 9{x^2}{y^2}\; + {x^2}{y^2}}\\{ = \left( {15{x^3}y-\;15{x^3}y} \right) + \left( {-10{x^2}{y^2} + 9{x^2}{y^2}\; + {x^2}{y^2}} \right) + 5x}\\{ = 5x.}\end{array}\)
Sau khi thu gọn, ta thấy \(P = 5x\) không chứa y. Điều đó chứng tỏ P chỉ phụ thuộc vào biến x mà không phụ thuộc vào biến y.
b)
\(\begin{array}{l}P = 10\;\\5x = 10\;\\\;x = 2\end{array}\).