Câu hỏi/bài tập:
Rút gọn biểu thức \((3{x^2}\;-5xy-4{y^2}).(2{x^2}\; + {y^2}) + (2{x^4}{y^2}\; + {x^3}{y^3}\; + {x^2}{y^4}):\;\left( {\frac{1}{5}xy} \right).\)
Sử dụng quy tắc nhân đa thức với đa thức và quy tắc chia đa thức cho đơn thức.
Advertisements (Quảng cáo)
Kí hiệu biểu thức đã cho là P. Ta thấy P = A + B, trong đó:
\(\begin{array}{*{20}{l}}{A = \left( {3{x^2}\;-5xy-4{y^2}} \right).\left( {2{x^2}\; + {y^2}} \right)}\\{ = 6{x^4}\; + 3{x^2}{y^2}\;-10{x^3}y-5x{y^3}\;-8{x^2}{y^2}\;-4{y^4}}\\{ = 6{x^4}\;-10{x^3}y-5x{y^3}\;-5{x^2}{y^2}\;-4{y^4}.}\end{array}\)
\(\begin{array}{l}B = (2{x^4}{y^2}\; + {x^3}{y^3}\; + {x^2}{y^4}):\;\left( {\frac{1}{5}xy} \right)\\ = 10{x^3}y + 5{x^2}{y^2}\; + 5x{y^3}.\end{array}\)
Từ đó ta có
\(\begin{array}{*{20}{l}}{P = A + B = 6{x^4}\;-10{x^3}y-5x{y^3}\;-5{x^2}{y^2}\;-4{y^4}\; + 10{x^3}y + 5{x^2}{y^2}\; + 5x{y^3}}\\\begin{array}{l} = 6{x^4} + \left( {-10{x^3}y\; + 10{x^3}y} \right) + \left( {-5x{y^3} + 5x{y^3}} \right) + \left( {-5{x^2}{y^2} + 5{x^2}{y^2}} \right)-4{y^4}\;\\ = 6{x^4}\;-4{y^4}.\end{array}\end{array}\)