Một chiếc hộp có chứa 5 tấm thẻ cùng loại, được đánh số lần lượt là 3; 5; 6; 7; 9.
Lấy ngẫu nhiên đồng thời 2 tấm thẻ từ hộp.
a) Xác định không gian mẫu và số kết quả có thể xảy ra của phép thử.
b) Tính xác suất của mỗi biến cố sau:
A: “Tích các số ghi trên 2 tấm thẻ chia hết cho 3”;
B: “Tổng các số ghi trên 2 tấm thẻ lớn hơn 13”.
- Tính \(n(\Omega )\)
- Tính các kết quả thuận lợi của biến cố A và B.
Advertisements (Quảng cáo)
- Sau đó tính xác suất A và B dựa vào: Xác suất của biến cố A, kí hiệu là P(A), được xác định bởi công thức: \(P(A) = \frac{{n(A)}}{{n(\Omega )}}\), trong đó n(A) là số các kết quả thuận lợi cho A; \(n(\Omega )\) là số các kết quả có thể xảy ra.
a) \(\Omega \) = {(3; 5), (3; 6), (3; 7), (3;9), (5; 6), (5; 7), (5; 9), (6; 7), (6; 9), (7; 9)}.
Suy ra \(n(\Omega )\) = 10 cách.
Do 5 tấm thẻ là cùng loại nên các thẻ có cùng khả năng xảy ra.
Có 9 kết quả thuận lợi cho biến cố A là:
(3; 5), (3; 6), (3; 7), (3;9), (5; 6), (5; 9), (6; 7), (6; 9), (7; 9).
Xác suất biến cố A: P(A) = \(\frac{9}{{10}}\) = 0,9.
Có 3 kết quả thuận lợi cho biến cố B là: (5; 9), (6; 9), (7; 9).
Xác suất biến cố B: P(B) = \(\frac{3}{{10}}\) = 0,3.