Trang chủ Lớp 9 SGK Toán 9 - Chân trời sáng tạo Mục 2 trang 95, 96 Toán 9 tập 2 – Chân trời...

Mục 2 trang 95, 96 Toán 9 tập 2 - Chân trời sáng tạo: Nhà khoa học cổ đại Archimèdes đã khám phá ra cách tính diện tích của mặt cầu như sau...

Trả lời HĐ3, VD2 - mục 2 trang 95, 96 SGK Toán 9 tập 2 - Chân trời sáng tạo - Bài 3. Hình cầu. Nhà khoa học cổ đại Archimèdes đã khám phá ra cách tính diện tích của mặt cầu như sau: Lấy một nửa hình cầu bán kính R và một hình trụ có bán kính đáy R...

Hoạt động (HĐ) 3

Gợi ý giải câu hỏi Hoạt động 3 trang 95SGK Toán 9

Nhà khoa học cổ đại Archimèdes đã khám phá ra cách tính diện tích của mặt cầu như sau: Lấy một nửa hình cầu bán kính R và một hình trụ có bán kính đáy R. Dùng sợi dây quấn quanh nửa mặt cầu như Hình 10a, rồi cùng đoạn dây đó người ta quấn quanh hình trụ như Hình 10b thì thấy chiều cao của phần hình trụ được quấn dây bằng bán kính R.

a) Tính theo R diện tích xung quanh của phần hình trụ được quấn dây ở Hình 10b.

b) Từ đó dự đoán diện tích nửa mặt cầu ở Hình 10a.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Dựa vào công thức tính diện tích xung quanh của hình trụ là: \({S_{xq}} = 2\pi rh\)

Answer - Lời giải/Đáp án

a) Diện tích xung quanh của phần hình trụ là: Scầu = Strụ = \(2\pi {R^2}\)

b) Diện tích nửa mặt cầu là: S = Strụ = \(2\pi {R^2}\)


Advertisements (Quảng cáo)

Vận dụng (VD) 2

Trả lời câu hỏi Vận dụng 2 trang 96 SGK Toán 9

Tìm diện tích bề mặt của Mặt Trăng, biết đường kính Mặt Trăng là khoảng

3474 km.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Dựa vào công thức tính diện tích mặt cầu là: S = \(4\pi {R^2}\)

Answer - Lời giải/Đáp án

Bán kính Mặt Trăng là: \(R = \frac{d}{2} = \frac{{3474}}{2}\) = 1737 km.

Diện tích bề mặt của Mặt Trăng là:

S = \(4\pi {R^2} = 4\pi .{(1737)^2} \approx \) 37914864 km2.

Advertisements (Quảng cáo)