Trang chủ Lớp 9 Toán lớp 9 (sách cũ) Bài 6 trang 69 sgk Toán 9 tập 2, Bài 6. Cho...

Bài 6 trang 69 sgk Toán 9 tập 2, Bài 6. Cho tam giác đều ABC....

Bài 6. Cho tam giác đều ABC.. Bài 6 trang 69 sgk Toán lớp 9 tập 2 - Bài 1. Góc ở tâm. Số đo cung

Bài 6. Cho tam giác đều \(ABC\). Gọi \(O\) là tâm của đường tròn đi qua ba đỉnh \(A, B, C\).

a) Tính số đo các góc ở tâm tạo bởi hai trong ba bán kính \(OA, OB, OC\).

b) Tính số đo các cung tạo bởi hai trong ba điểm \(A, B, C\).

Hướng dẫn giải:

a) Ta có: \(\widehat A = \widehat B = \widehat C = {60^0}\) (gt)

Advertisements (Quảng cáo)

Suy ra:  \(\widehat {{A_1}} = \widehat {{A_2}} = \widehat {{B_1}} = \widehat {{B_2}} = \widehat {{C_1}} = \widehat {{C_2}} = {30^0}\)

Tâm \(O\) của đường tròn ngoại tiếp tam giác là giao điểm của ba đường trung trực của ba cạnh cũng chính là giao điểm của ba đường phân giác của tam giác đều \(ABC\).

Suy ra:  \(\widehat {AOB} = {180^0} - \widehat {{A_1}} - \widehat {{B_1}} = {180^0} - {30^0} - {30^0} = {120^0}\)

Tương tự ta suy ra: \(\widehat {AOB} = \widehat {BOC} = \widehat {COA} = {120^0}\)

b) Từ \(\widehat {AOB} = \widehat {BOC} = \widehat {COA} = {120^0}\) ta suy ra:

\(sđ\overparen{ABC}\) = \(sđ\overparen{BCA}\) = \(sđ\overparen{CAB}\) \(= 240^0\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)