Miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{2x - 5y > 1}\\{2x + y > - 5}\\{x + y < - 1}\end{array}} \right.\) là phần mặt phẳng chứa điểm có tọa độ:
A. \(\left( {0;0} \right)\) B. \(\left( {1;0} \right)\) C. \(\left( {0;2} \right)\) D. \(\left( {0; - 2} \right)\)
Xét hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{2x - 5y > 1\left( 1 \right)}\\{2x + y > - 5\left( 2 \right)}\\{x + y < - 1\left( 3 \right)}\end{array}} \right.\)
+) Thay x = 0 và y = 0, ta được:
(1) ⇔ 2.0 – 5.0 > 1 ⇔ 0 > 1 (vô lí);
=> Điểm có tọa độ (0; 0) không thuộc miền nghiệm của hệ bất phương trình đã cho.
+) Thay x = 1 và y = 0 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:
(3) ⇔ 1 + 0 < – 1 ⇔ 1 < – 1 (vô lí).
Do đó cặp số (1; 0) không thuộc miền nghiệm của hệ bất phương trình đã cho.
Advertisements (Quảng cáo)
+) Thay x = 0 và y = 2 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:
(1) ⇔ 2.0 – 5.2 > 1 ⇔ – 10 > 1 (vô lí);
(2) ⇔ 2.0 + 2 > – 5 ⇔ 2 > – 5 (luôn đúng);
(3) ⇔ 0 + 2 < – 1 ⇔ 2 < – 1 (vô lí).
Do đó cặp số (0; 2) không thuộc miền nghiệm của hệ bất phương trình đã cho.
+) Thay x = 0 và y = – 2 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:
(1) ⇔ 2.0 – 5.(– 2) > 1 ⇔ 10 > 1 (luôn đúng);
(2) ⇔ 2.0 + (– 2) > – 5 ⇔ – 2 > – 5 (luôn đúng);
(3) ⇔ 0 + (– 2) < – 1 ⇔ – 2 < – 1 (luôn đúng).
Do đó cặp số (0; – 2) thuộc miền nghiệm của hệ bất phương trình đã cho
Chọn D