Cho mẫu số liệu: 3 4 6 9 13
a) Trung vị của mẫu số liệu trên là:
A. 7 B. 6 C. 6,5 D. 8
b) Số trung bình cộng của mẫu số liệu trên là:
A. 7 B. 6 C. 6,5 D. 8
c) Khoảng biến thiên của mẫu số liệu trên là:
A. 7 B. 6 C. 1 D. 10
d) Tứ phân vị của mẫu số liệu trên là:
A. \({Q_1} = 4;{Q_2} = 6;{Q_3} = 9\) B. \({Q_1} = 3,5;{Q_2} = 6;{Q_3} = 9\)
C. \({Q_1} = 4;{Q_2} = 6;{Q_3} = 11\) D. \({Q_1} = 3,5;{Q_2} = 6;{Q_3} = 11\)
e) Khoảng tứ phân vị của mẫu số liệu trên là:
A. 7,5 B. 6 C. 1 D. 10
g) Phương sai của mẫu số liệu trên là:
A. 66 B. 13,2 C. \(\sqrt {66} \) D. \(\sqrt {13,2} \)
h) Độ lệch chuẩn của mẫu số liệu trên là:
A. 66 B. 13,2 C. \(\sqrt {66} \) D. \(\sqrt {13,2} \)
- Dùng công thức tính số trung bình: \(\overline x = \frac{{{x_1} + {x_2} + ... + {x_n}}}{n}\)
- Khoảng tứ phân vị: \(\Delta Q = {Q_3} - {Q_1}\)
Bước 1: Sắp xếp các số liệu theo thứ tự không giảm.
Bước 2: Tính cỡ mẫu \(n\), tìm tứ phân vị thứ hai \({Q_2}\)(chính là trung vị của mẫu).
Bước 3: Tìm tứ phân vị thứ nhất: là trung vị của nửa số liệu đã sắp xếp bên trái \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)
Advertisements (Quảng cáo)
Bước 4: Tìm tứ phân vị thứ ba: là trung vị của nửa số liệu đã sắp xếp bên phải \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)
- Sắp xếp số liệu theo thứ tự không giảm và tìm khoảng biến thiên theo công thức\(R = {x_n} - {x_1}\) với số cao nhất và thấp nhất lần lượt \({x_n},{x_1}\)
- Tìm phương sai theo công thức \({S^2} = \frac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + ... + {n_k}{x_k}^2} \right) - {\overline x ^2}\) và độ lệch chuẩn \(S = \sqrt {{S^2}} \)
3 4 6 9 13
a) Vì \(n = 5\) là số lẻ nên tứ phân vị thứ hai là: \({Q_2} = 6\) là tứ phân vị
Chọn B.
b) Số trung bình của mẫu số liệu là: \(\overline x = \frac{{3 + 4 + 6 + 9 + 13}}{5} = 7\)
Chọn A.
c) Số cao nhất và thấp nhất lần lượt là 13 và 3 do đó khoảng biến thiên của dãy số liệu trên là: \(R = 13 - 3 = 10\)
Chọn D.
d)
+ Vì \(n = 5\) là số lẻ nên tứ phân vị thứ hai là: \({Q_2} = 6\) là tứ phân vị
+ Tứ phân vị thứ nhất là trung vị của 2 số đầu tiên của mẫu số liệu: \({Q_1} = \left( {3 + 4} \right):2 = 3,5\)
+ Tứ phân vị thứ ba là trung vị của 2 số cuối của mẫu số liệu: \({Q_3} = \left( {9 + 13} \right):2 = 11\)
Chọn D.
e) + Khoảng tứ phân vị: \(\Delta Q = {Q_3} - {Q_1} = 11 - 3,5 = 7,5\)
Chọn A.
g) Phương sai: \({S^2} = \frac{1}{5}({3^2} + {4^2} + {6^2} + {9^2} + {13^2}) - {7^2} = 13,2\)
Chọn B.
h) Độ lệch chuẩn: \(S = \sqrt {{S^2}} = \sqrt {13,2} \)
Chọn D.