Giải thích vì sao chỉ cần kiểm tra nghiệm của phương trình \(f\left( x \right) = {\left[ {g\left( x \right)} \right]^2}\) thỏa mãn bất phương trình \(g\left( x \right) \ge 0\) mà không cần kiểm tra thỏa mãn bất phương trình \(f\left( x \right) \ge 0\) để kết luận nghiệm của phương trình \(\sqrt {f\left( x \right)} = g\left( x \right)\)
\(\sqrt {f\left( x \right)} = g\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}g\left( x \right) \ge 0\\f\left( x \right) = {\left[ {g\left( x \right)} \right]^2}\end{array} \right.\)
Advertisements (Quảng cáo)
\(\sqrt {f\left( x \right)} \ge 0 \Rightarrow g\left( x \right) \ge 0\) Khi đó \(f\left( x \right) = {\left[ {g\left( x \right)} \right]^2} \ge 0\), thỏa mãn ĐKXĐ của căn thức.
Ta có \(\sqrt {f\left( x \right)} = g\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}g\left( x \right) \ge 0\\f\left( x \right) = {\left[ {g\left( x \right)} \right]^2}\end{array} \right.\)
Nên chỉ cần kiểm tra nghiệm của phương trình \(f\left( x \right) = {\left[ {g\left( x \right)} \right]^2}\) thỏa mãn bất phương trình \(g\left( x \right) \ge 0\) mà không cần kiểm tra thỏa mãn bất phương trình \(f\left( x \right) \ge 0\) để kết luận nghiệm của phương trình \(\sqrt {f\left( x \right)} = g\left( x \right)\)