Trang chủ Lớp 10 SBT Toán 10 - Cánh diều Bài 45 trang 50 SBT Toán 10 Cánh Diều: Trong một trò...

Bài 45 trang 50 SBT Toán 10 Cánh Diều: Trong một trò chơi, bạn Hằng ghi tên 63 tỉnh, thành phố trực thuộc Trung ương của VN...

Giải bài 45 trang 50 sách bài tập toán 10 - Cánh diều - Bài tập cuối chương VI

Question - Câu hỏi/Đề bài

Trong một trò chơi, bạn Hằng ghi tên 63 tỉnh, thành phố trực thuộc Trung ương của VN (tính đến năm 2021) vào 63 phiếu, hai phiếu khác nhau ghi tên hai nơi khác nhau, rồi bỏ tất cả các phiếu đó vào một hộp kín. Bạn Hoài rút ngẫu nhiên 2 phiếu. Tính xác suất của mỗi biến cố sau:

a) A: “Hai phiếu rút được ghi tên hai nơi bắt đầu bằng âm tiết Hà”

b) B: “Hai phiếu rút được ghi tên hai nơi bắt đầu bằng chữ K”

c) C: “Hai phiếu rút được ghi tên hai nơi bắt đầu bằng chữ B”

Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\), trong đó \(n\left( A \right)\) và \(n\left( \Omega  \right)\) lần lượt là kí hiệu số phần tử của tập A và \(\Omega \)

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Chọn 2 tỉnh thành trong số 63 tình thành \( \Rightarrow n\left( \Omega  \right) = C_{63}^2\)

a) A: “Hai phiếu rút được ghi tên hai nơi bắt đầu bằng âm tiết Hà”: có 4 tỉnh: HN, Hà Giang, Hà Tĩnh, Hà Nam \( \Rightarrow n\left( A \right) = C_4^2 = 6\)

\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{6}{{C_{63}^2}} = \frac{2}{{651}}\)

b) B: “Hai phiếu rút được ghi tên hai nơi bắt đầu bằng chữ K”: có 3 tỉnh: Khánh Hòa, Kiên Giang, Kon Tum \( \Rightarrow n\left( B \right) = C_3^2 = 3\)

\( \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}} = \frac{3}{{C_{63}^2}} = \frac{1}{{651}}\)

 

c) C: “Hai phiếu rút được ghi tên hai nơi bắt đầu bằng chữ B”: có 10 tỉnh: Bà Rịa – Vũng Tàu, Bắc Giang, Bắc Kạn, Bắc Ninh, Bạc Liêu, Bến Tre, Bình Phước, Bình Dương, Bình Định, Bình Thuận \( \Rightarrow n\left( C \right) = C_{10}^2 = 45\)

\( \Rightarrow P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega  \right)}} = \frac{{45}}{{C_{63}^2}} = \frac{5}{{217}}\)

Advertisements (Quảng cáo)