Trang chủ Lớp 10 SBT Toán 10 - Chân trời sáng tạo Bài 2 trang 79 SBT Toán lớp 10 Chân trời sáng tạo:...

Bài 2 trang 79 SBT Toán lớp 10 Chân trời sáng tạo: Tính các góc chưa biết của tam giác ABC trong các trường hợp sau:...

Giải bài 2 trang 79 sách bài tập toán 10 - Chân trời sáng tạo - Bài 3. Giải tam giác và ứng dụng thực tế

Question - Câu hỏi/Đề bài

Tính các góc chưa biết của tam giác ABC trong các trường hợp sau:

a) \(\widehat A = 42^\circ ,\widehat B = 63^\circ \)

b) \(BC = 10,AC = 20,\widehat C = 80^\circ \)

c) \(AB = 15,AC = 25,BC = 30\)

a) Sử dụng tính chất trong tam giác \(\widehat A + \widehat B + \widehat C = 180^\circ \)

b)       Bước 1: Sử dụng định lí côsin xác định cạnh AB

          Bước 2: Sử dụng định lí sin xác định các góc

c) Sử dụng hệ quả của định lí côsin xác định các góc tròn tam giác

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

a) Ta có \(\widehat A + \widehat B + \widehat C = 180^\circ \)

Suy ra: \(\widehat C = 180^\circ  - \left( {\widehat A + \widehat B} \right) = 180^\circ  - \left( {42^\circ  + 63^\circ } \right) = 75^\circ \)

b) Áp dụng định lí côsin ta có:

\(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc\cos A\\ \Leftrightarrow A{B^2} = B{C^2} + A{C^2} - 2.BC.AC.\cos C\\ \Rightarrow AB = \sqrt {B{C^2} + A{C^2} - 2.BC.AC.\cos C}  = \sqrt {{{10}^2} + {{20}^2} - 2.10.20.\cos 80}  \simeq 20,75\end{array}\)

Áp dụng định lí sin ta có:

\(\begin{array}{l}\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}} = \frac{{BC}}{{\sin A}} = \frac{{20,75}}{{\sin 80}}\\ \Rightarrow \left\{ \begin{array}{l}\sin B \simeq 0,95\\\sin A \simeq 0,48\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\widehat B \simeq 71^\circ 40’\\\widehat A \simeq 28^\circ 20’\end{array} \right.\end{array}\)

c) Áp dụng hệ quả của định lí côsin ta có:

\(\begin{array}{l}\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{{25}^2} + {{15}^2} - {{30}^2}}}{{2.25.15}} =  - \frac{1}{{15}} \Rightarrow \widehat A \simeq 93^\circ 49’\\\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{{{30}^2} + {{15}^2} - {{25}^2}}}{{2.30.15}} = \frac{5}{9} \Rightarrow \widehat B \simeq 56^\circ 15’\\\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} = \frac{{{{30}^2} + {{25}^2} - {{15}^2}}}{{2.30.25}} = \frac{{13}}{{15}} \Rightarrow \widehat C \simeq 29^\circ 56’\end{array}\)

Advertisements (Quảng cáo)