Trang chủ Lớp 10 Toán lớp 10 - Cánh diều Bài 7 trang 66 Toán 10 tập 2 – Cánh diều: Trong...

Bài 7 trang 66 Toán 10 tập 2 – Cánh diều: Trong mặt phẳng toạ độ Oxy, cho tam giác ABC. Các điểm M(1;- 2), N(4;- 1) và P(6 ; 2...

Giải bài 7 trang 66 SGK Toán 10 tập 2 – Cánh diều - Bài 1. Tọa độ của vecto

Question - Câu hỏi/Đề bài

Trong mặt phẳng toạ độ Oxy, cho tam giác ABC. Các điểm M(1;- 2), N(4;- 1) và P(6 ; 2) lần lượt là trung điểm của các cạnh BC, CA, AB. Tìm toạ độ của các điểm A, B, C.

Đường trung bình song song và bằng một phần hai cạnh đáy tương ứng

Với \(\overrightarrow a  = \left( {{x_1};{y_1}} \right)\) và \(\overrightarrow b  = \left( {{x_2},{y_2}} \right)\) , ta có: \(\overrightarrow a  = \overrightarrow b  \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2}\\{y_1} = {y_2}\end{array} \right.\)

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Theo tích chất đường trung bình trong một tam giác ta có: \(\overrightarrow {PN}  = \overrightarrow {BM}  = \overrightarrow {MC} \) và \(\overrightarrow {MP}  = \overrightarrow {NA} \)

Gọi \(A\left( {{a_1},{a_2}} \right),B\left( {{b_1};{b_2}} \right),C\left( {{c_1};{c_2}} \right)\)

Ta có: \(\overrightarrow {PN}  = \left( {2;3} \right)\),\(\overrightarrow {BM}  = \left( {1 - {b_1}; - 2 - {b_2}} \right)\), \(\overrightarrow {MC}  = \left( {{c_1} - 1;{c_2} + 2} \right)\), \(\overrightarrow {MP}  = \left( {5;4} \right)\), \(\overrightarrow {NA}  = \left( {{a_1} - 4;{a_2} + 1} \right)\)

Có \(\overrightarrow {PN}  = \overrightarrow {BM}  \Leftrightarrow \left\{ \begin{array}{l}2 = 1 - {b_1}\\3 =  - 2 - {b_2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{b_1} =  - 1\\{b_2} =  - 5\end{array} \right.\) .Vậy \(B\left( { - 1; - 5} \right)\)

Có \(\overrightarrow {PN}  = \overrightarrow {MC}  \Leftrightarrow \left\{ \begin{array}{l}2 = {c_1} - 1\\3 = {c_2} + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{c_1} = 3\\{c_2} = 1\end{array} \right.\) .Vậy \(C\left( {3;1} \right)\)

Có \(\overrightarrow {NA}  = \overrightarrow {MP}  \Leftrightarrow \left\{ \begin{array}{l}5 = {a_1} - 4\\4 = {a_2} + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{a_1} = 9\\{a_2} = 3\end{array} \right.\) .Vậy \(A\left( {9;3} \right)\)

Advertisements (Quảng cáo)