Trang chủ Lớp 10 Toán lớp 10 - Cánh diều Bài 9 trang 54 Toán 10 tập 2 – Cánh diều: Bước...

Bài 9 trang 54 Toán 10 tập 2 – Cánh diều: Bước 1: Tính số phần tử của không gian mẫu “(nleft( Omega  right))”  và số phần...

Giải bài 9 trang 54 SGK Toán 10 tập 2 – Cánh diều - Bài tập cuối chương VI

Question - Câu hỏi/Đề bài

Trong một hộp có 20 chiếc thẻ cùng loại được viết các số 1, 2, 3, ..., 20 sao cho mỗi thẻ chỉ viết một số và hai thẻ khác nhau viết hai số khác nhau. Chọn ngẫu nhiên 2 chiếc thẻ. Tính xác suất của biến cố “Hai thẻ được chọn có tích của hai số được viết trên đó là số lẻ”.

Bước 1: Tính số phần tử của không gian mẫu “\(n\left( \Omega  \right)\)”  và số phần tử của kết quả có lợi cho biến cố “\(n\left( A \right)\)” trong đó A là biến cố “Cả 3 sản phẩm được chọn là chính phẩm”

Bước 2: Xác suất của biến cố là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\)

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

a) Mỗi phần tử của không gian mẫu là một tổ hợp chập 2 của 20 phần tử. Do đó, số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = C_{20}^2\) ( phần tử)

b) Gọi A là biến cố “Tích các số trên hai thẻ là số lẻ”

Để tích các số trên thẻ là số lẻ thì cả hai thẻ bốc được đểu phải là số lẻ vậy nên ta phải chọn ngẫu nhiên 2 thẻ từ 10 thẻ số lẻ. Do đó, số phần tử các kết quả thuận lợi cho biến cố A là tổ hợp chập 2 của 10 phần tử: \(n\left( A \right) = C_{10}^2\) ( phần tử)

Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{10}^2}}{{C_{20}^2}} = \frac{9}{{38}}\)

Advertisements (Quảng cáo)