Trang chủ Lớp 10 Toán lớp 10 - Cánh diều Mục I trang 42, 43 Toán 10 tập 2 Cánh diều: Để...

Mục I trang 42, 43 Toán 10 tập 2 Cánh diều: Để tính xác suất của biến cố nói trên, ta sẽ lấy số phần tử của kết quả có lợi cho b...

Giải mục I trang 42, 43 SGK Toán 10 tập 2 - Cánh diều - Bài 4. Xác suất của biến cố trong một số trò chơi đơn giản

HĐ Khởi động

Answer - Lời giải/Đáp án

Để tính xác suất của biến cố nói trên, ta sẽ lấy số phần tử của kết quả có lợi cho biến cố chia cho số phần tử của không gian mẫu.

Cụ thể:

Không gian mẫu là tập hợp \(\Omega  = \{ SS;SN;NS;NN\} \). Do đó \(n(\Omega ) = 4\)

Các kết quả thuận lợi cho biến cố (A) đã cho là: SN; NS; NN, tức là \(n(A) = 3\)

Vậy xác suất của biến cố A là \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{3}{4}.\)

Hoạt động 1

Viết tập hợp \(\Omega \)  các kết quả có thể xảy ra đối với mặt xuất hiện của đồng xu sau hai lần tung

Answer - Lời giải/Đáp án

• Tập hợp 2 các kết quả có thể xảy ra đối với mặt xuất hiện của đồng xu sau hai lần tung là\(\Omega  = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS;{\rm{ }}NN} \right\}\) , trong đó, chẳng hạn SN là kết quả “Lần thứ nhất đồng xu xuất hiện mặt sấp, lần thứ hai đồng xu xuất hiện mặt ngửa”.

• Tập hợp  \(\Omega \) gọi là không gian mẫu trong trò chơi tung một đồng xu hai lần liên tiếp.

Hoạt động 2

Xét sự kiện “Kết quả của hai lần tung đồng xu là giống nhau”. Sự kiện đã nêu bao gồm những kết quả nào trong tập hợp \(\Omega \) ? Viết tập hợp A các kết quả đó.

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Tập hợp A các kết quả có thể xảy ra đối với sự kiện trên là: A = {SS; NN}

Hoạt động 3

Viết tỉ số giữa số phần tử của tập hợp A và số phần tử của tập hợp \(\Omega \).

Answer - Lời giải/Đáp án

Tỉ số giữa số phần tử của tập hợp A và số phần tử của tập hợp \(\Omega \) là \(\frac{2}{4} = \frac{1}{2}\)

Luyện tập – vận dụng 1

Tung một đồng xu hai lần liên tiếp. Xét biến cố “Có ít nhất một lần xuất hiện mặt sấp”. Tính xác suất của biến cố nói trên.

Answer - Lời giải/Đáp án

+) Không gian mẫu trong trò chơi trên là tập hợp \(\Omega  = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS;{\rm{ }}NN} \right\}\). Vậy \(n\left( \Omega  \right) = 4\)

+) Gọi A là biến cố “Có ít nhất một lần xuất hiện mặt sấp”

+) Các kết quả thuận lợi cho biến cố A là: \(SS;{\rm{ }}SN;{\rm{ }}NS\)tức là \(A = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS} \right\}\). Vậy \(n\left( A \right) = 3\).

+) Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{3}{4}\)

Advertisements (Quảng cáo)