Trang chủ Lớp 10 Toán lớp 10 - Chân trời sáng tạo Bài 5 trang 25 Toán 10 tập 1 – Chân trời sáng...

Bài 5 trang 25 Toán 10 tập 1 – Chân trời sáng tạo: Trong số 35 học sinh của lớp 10H, có 20 học sinh thích môn Toán, 16 học sinh thích m...

Giải bài 5 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo - Bài 3. Các phép toán trên tập hợp

Question - Câu hỏi/Đề bài

Trong số 35 học sinh của lớp 10H, có 20 học sinh thích môn Toán, 16 học sinh thích môn Tiếng Anh và 12 học sinh thích cả hai môn này. Hỏi lớp 10H:

a) Có bao nhiêu học sinh thích ít nhất một trong hai môn Toán và Tiếng Anh?

b) Có bao nhiêu học sinh không thích cả hai môn này?

Kí hiệu A, B lần lượt là tập hợp các học sinh thích môn Toán và Tiếng Anh.

Sử dụng biểu đồ Ven, minh họa tập hợp các thích ít nhất một trong hai môn Toán và Tiếng Anh (\(A \cup B\)) và các học sinh không thích cả hai môn này.

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Gọi A, B lần lượt là tập hợp các học sinh thích môn Toán và Tiếng Anh, X là tập hợp học sinh lớp 10H.

Theo giả thiết, \(n(A) = 20,n(B) = 16,n(A \cap B) = 12,n(X) = 35\)

 

a) Nhận thấy rằng, nếu tính tổng \(n(A) + n(B)\) thì ta được số học sinh thích ít nhất một trong hai môn Toán và Tiếng Anh, nhưng số học sinh thích cả hai môn Toán và Tiếng Anh được tính hai lần. Do đó, số học sinh thích ít nhất một trong hai môn Toán và Tiếng Anh là:

\(n(A \cup B) = n(A) + n(B) - n(A \cap B) = 20 + 16 - 12 = 24\)

b) Trong số 35 học sinh lớp 10H, có 24 học sinh thích ít nhất một trong hai môn Toán và Tiếng Anh, còn lại số học sinh không thích cả hai môn này là: \(35 - 24 = 11\) (học sinh).

Advertisements (Quảng cáo)