HĐ Khám phá 1
Gieo một con xúc xắc cân đối và đồng chất. Hãy so sánh khả năng xảy ra của hai biến cố:
A: “Mặt xuất hiện có số chấm là số chẵn”
B: “Mặt xuất hiện có số chấm là số lẻ”
Vì con xúc xắc cân đối và đồng chất nên các mặt có khả năng xuất hiện như nhau
Tập hợp mô tả biến cố A là: , suy ra có 3 kết quả thuận lợi cho biến cố A
Tập hợp mô tả biến cố B là: , suy ra có 3 kết quả thuận lợi cho biến cố B
Vậy khả năng xảy ra của hai biến cố A và B là như nhau
Thực hành 1
Gieo hai con xúc xắc cân đối và đồng chất. Tính xác suất của các biến cố:
a) “Hai mặt xuất hiện có cùng số chấm”
b) “Tổng số chấm trên hai mặt xuất hiện bằng 9”
Bước 1: Xác định không gian mẫu
Bước 2: Xác định số kết quả thuận lợi của biến cố
Bước 3: Tính xác xuất bằng công thức \(P\left( A \right) = \frac{{n(A)}}{{n(\Omega )}}\)
Kết quả của mỗi lần thử là một cặp (i; j) với i và j lần lượt là số chấm xuất hiện trên hai xúc xắc, hai con xúc xắc gieo đồng thời nên không quan tâm thứ tự, ta có không gian mẫu là:
\(\Omega = \begin{array}{l}\{(1;1),(1;2),(1;3),(1;4),(1;5),(1;6),(2;2),(2;3),(2;4),(2;5),(2;6),(3;3),(3;4),(3;5),(3;6),\\(4;4),(4;5),(4;6),(5;5),(5;6),(6;6)\}\end{array} \)
Không gian mẫu gồm có 21 kết quả, tức là \(n\left( \Omega \right) = 21\)
a) Ta có tập hợp miêu tả biến cố A
\(A = \left\{ {(1;1),(2;2),(3;3),(4;4),(5;5),(6;6)} \right\} \Rightarrow n\left( A \right) = 6\)
Advertisements (Quảng cáo)
Do đó, xác suất của biến cố A là: \(P\left( A \right) = \frac{{n(A)}}{{n(\Omega )}} = \frac{6}{{21}} = \frac{2}{7}\)
b) Ta có tập hợp miêu tả biến cố B
\(B = \left\{ {(6;3),(5;4)} \right\} \Rightarrow n\left( B \right) = 2\)
Do đó, xác suất của biến cố B là: \(P\left( B \right) = \frac{{n(B)}}{{n(\Omega )}} = \frac{2}{{21}}\)
Vận dụng
Hãy tính xác suất của hai biến cố được nêu ra ở hoạt động khởi động của bài học
Bước 1: Xác định không gian mẫu
Bước 2: Xác định số kết quả thuận lợi của biến cố
Bước 3: Tính xác xuất bằng công thức \(P\left( A \right) = \frac{{n(A)}}{{n(\Omega )}}\)
Do các viên bi có cùng kích thước và trọng lượng nên số kết quả cho việc lấy 2 viên bi từ hộp có 10 viên bi có \(C_{10}^2\) cách
Gọi A là biến cố “Lấy được hai viên bi cùng màu”
Việc lấy được hai viên bi cùng màu có hai khả năng
+) Khả năng thứ nhất: hai viên bi cùng màu xanh có \(C_5^2\) cách
+) Khả năng thứ hai: hai viên bi cùng màu đỏ có \(C_5^2\) cách
Suy ra có \(2C_5^2 = 20\) kết quả thuận lợi cho biến cố A
Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{20}}{{C_{10}^2}} = \frac{4}{9}\)
Gọi B là biến cố “Lấy được hai viên bi khác màu”
Việc lấy được hai viên bi khác màu có hai công đoạn
+) Công đoạn thứ nhất: Lấy 1 viên bi màu xanh có \(5\) cách
+) Công đoạn thứ hai: Lấy 1 viên bi màu đỏ có 5 cách
Suy ra có \(5.5 = 25\) kết quả thuận lợi cho biến cố B
Vậy xác suất của biến cố B là: \(P\left( B \right) = \frac{{n(B)}}{{n(\Omega )}} = \frac{{25}}{{C_{10}^2}} = \frac{5}{9}\)