Trang chủ Lớp 10 Toán lớp 10 Kết nối tri thức Bài 7.11 trang 41 Toán 10 – Kết nối tri thức: Chứng...

Bài 7.11 trang 41 Toán 10 – Kết nối tri thức: Chứng minh rằng hai đường thẳng d: y = ax + b ((a{rm{ }} ne {rm{ }}0) ) và d’:...

Giải bài 7.11 trang 41 SGK Toán 10 – Kết nối tri thức - Bài 20. Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách

Question - Câu hỏi/Đề bài

Chứng minh rằng hai đường thẳng d: y = ax + b (\(a{\rm{ }} \ne {\rm{ }}0\) ) và d’: y=a’x + b’ (\(a'{\rm{ }} \ne {\rm{ }}0\))  vuông góc với nhau khi và chỉ khi aa’ = -1.

Chuyển mỗi phương trình của \(d,d’\) về dạng tổng quát từ đó tìm được hai vecto pháp tuyến tương ứng của mỗi đường thẳng, sau đó sử dụng điều kiện \(\overrightarrow {{n_d}} .\overrightarrow {{n_{d’}}}  = 0\).

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Phương trình tổng quát của đường thẳng \(d,d’\) lần lượt là: \(ax - y + b = 0,{\rm{ }}a’x - y + b’ = 0\).

Do đó \(\overrightarrow {{n_d}}  = \left( {a; - 1} \right),{\rm{ }}\overrightarrow {{n_{d’}}}  = \left( {a’; - 1} \right)\).

Ta có \(d \bot d’ \Leftrightarrow \overrightarrow {{n_d}}  \bot \overrightarrow {{n_{d’}}}  \Leftrightarrow \overrightarrow {{n_d}} .\overrightarrow {{n_{d’}}}  = 0 \Leftrightarrow a.a’ + \left( { - 1} \right)\left( { - 1} \right) = 0 \Leftrightarrow a.a’ =  - 1\).

Advertisements (Quảng cáo)