Trang chủ Lớp 10 Toán lớp 10 (sách cũ) Bài 3 trang 7 sgk hình học lớp 10: Các định nghĩa

Bài 3 trang 7 sgk hình học lớp 10: Các định nghĩa...

Bài 3 trang 7 sgk hình học lớp 10: Các định nghĩa. Bài 3. Cho tứ giác ABCD. Chứng minh rằng tứ giác đó là hình bình hành khi và chỉ khi

Bài 3. Cho tứ giác \(ABCD\). Chứng minh rằng tứ giác đó là hình bình hành khi và chỉ khi \(\overrightarrow{AB}\) = \(\overrightarrow{DC}\).

Ta chứng minh hai mệnh đề:

*) Khi \(\overrightarrow{AB}\) = \(\overrightarrow{DC}\) thì \(ABCD\) là hình bình hành.

Thật vậy, theo định nghĩa của vec tơ bằng nhau thì:

\(\overrightarrow{AB}\) = \(\overrightarrow{DC}\)  ⇔ \(\left | \overrightarrow{AB} \right |\) = \(\left | \overrightarrow{DC} \right |\) và \(\overrightarrow{AB}\) và \(\overrightarrow{DC}\) cùng hướng.

 \(\overrightarrow{AB}\) và \(\overrightarrow{DC}\) cùng hướng suy ra \(\overrightarrow{AB}\) và \(\overrightarrow{DC}\) cùng phương, suy ra giá của chúng song song với nhau,

Advertisements (Quảng cáo)

hay \(AB // DC\)                          (1)

Ta lại có  \(\left | \overrightarrow{AB} \right |\) = \(\left | \overrightarrow{DC} \right |\) suy ra \(AB = DC\)   (2)

Từ (1) và (2), theo dấu hiệu nhận biết hình bình hành, tứ giác \(ABCD\) có một cặp cạnh song song và bằng nhau nên nó là hình bình hành. 

*) Khi \(ABCD\) là hình bình hành thì \(\overrightarrow{AB}\) = \(\overrightarrow{CD}\)

  Khi \(ABCD\) là hình bình hành thì \(AB // CD\). Dễ thấy, từ đây ta suy ra hai vec tơ \(\overrightarrow{AB}\) và \(\overrightarrow{CD}\) cùng hướng     (3)

Mặt khác \(AB = CD\) suy ra \(\left | \overrightarrow{AB} \right |\) = \(\left | \overrightarrow{CD} \right |\)          (4)

Từ (3) và (4) suy ra  \(\overrightarrow{AB}\) = \(\overrightarrow{CD}\).

Bạn đang xem bài tập, chương trình học môn Toán lớp 10 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: