Bài 11. Chứng minh rằng trong một tam giác \(ABC\) ta có:
a) \(\tan A + \tan B + \tan C = \tan A\tan B\tan C\)
b) \(\sin 2A + \sin 2B + \sin 2C = 4\sin A\sin B\sin C\)
a) Ta có:
\(\eqalign{
& A + B{\rm{ }}C = \pi \Rightarrow A = \pi - (B + C) \cr
& \tan A = \tan \left[ {\pi - (B + C)} \right] = - \tan (B + C) \cr
& = {{\tan B + \tan C} \over {\tan B\tan C - 1}} \cr
& \Rightarrow \tan A(\tan B\tan C - 1) = \tan B + \tan C \cr} \)
⇒đpcm
Advertisements (Quảng cáo)
b)
\(VT= 2\sin(A + B) \cos(A - B)+ 2 \sin C \cos C \)
\(= 2\sin C [\cos (A - B) + \cos C]\)
\(=2\sin C [\cos(A - B) - \cos (A + B)]\)
\(= 4\sin C\sin A \sin B\) (Đpcm)