Cho \(y = f\left( x \right)\) có đạo hàm tại \({x_0}\) là \(f’\left( {{x_0}} \right)\). Phát biểu nào sau đây là đúng?
A. \(f’\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) + f\left( {{x_0}} \right)}}{{x + {x_0}}}\)
B. \(f’\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\)
C. \(f’\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x + {x_0}}}\)
D. \(f’\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) + f\left( {{x_0}} \right)}}{{x - {x_0}}}\)
Advertisements (Quảng cáo)
Dựa vào định nghĩa để làm
Theo định nghĩa đạo hàm ta có:\(f’\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).
Chọn đáp án B.