Trang chủ Lớp 11 SBT Toán 11 - Cánh diều Bài 34 trang 82 SBT Toán 11 – Cánh diều: Cho hai...

Bài 34 trang 82 SBT Toán 11 - Cánh diều: Cho hai dãy số \(\left( {{u_n}} \right)\), \(\left( {{v_n}} \right)\) với \({u_n} = 1 - \frac{2}{n}\)...

Sử dụng các tính chất của giới hạn dãy số. Phân tích và lời giải - Bài 34 trang 82 sách bài tập toán 11 - Cánh diều - Bài tập cuối chương III. Cho hai dãy số \(\left( {{u_n}} \right)\), \(\left( {{v_n}} \right)\) với \({u_n} = 1 - \frac{2}{n}\), \({v_n} = 4 + \frac{2}{{n + 2}}\)...

Question - Câu hỏi/Đề bài

Cho hai dãy số \(\left( {{u_n}} \right)\), \(\left( {{v_n}} \right)\) với \({u_n} = 1 - \frac{2}{n}\), \({v_n} = 4 + \frac{2}{{n + 2}}\).

Khi đó, \(\lim \left( {{u_n} + \sqrt {{v_n}} } \right)\) bằng:

A. 3

B. 4

C. 5

D. 2

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Advertisements (Quảng cáo)

Sử dụng các tính chất của giới hạn dãy số

Answer - Lời giải/Đáp án

Ta có \(\lim \left( {{u_n} + \sqrt {{v_n}} } \right) = \lim {u_n} + \lim \sqrt {{v_n}} \).

Xét \(\lim {u_n} = \lim \left( {1 - \frac{2}{n}} \right) = \lim 1 - \lim \frac{2}{n} = 1 - 0 = 1\)

Do \(\lim {v_n} = \lim \left( {4 + \frac{2}{{n + 2}}} \right) = \lim 4 + \lim \frac{2}{{n + 2}} = 4 + 0 = 4\) nên \(\lim \sqrt {{v_n}} = \sqrt 4 = 2\).

Như vậy \(\lim \left( {{u_n} + \sqrt {{v_n}} } \right) = \lim {u_n} + \lim \sqrt {{v_n}} = 1 + 2 = 3\).

Đáp án đúng là A.

Advertisements (Quảng cáo)