Tập xác định của hàm số lôgarit \(y = {\log _a}x\left( {a > 0, a \ne 1} \right)\) là \(\left( {0; + \infty } \right). Vận dụng kiến thức giải - Bài 40 trang 44 sách bài tập toán 11 - Cánh diều - Bài 3. Hàm số mũ. Hàm số lôgarit. Giá trị thực của tham số \(a\) để hàm số \(y = {\log _{2a + 3}}x\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\) là...
Giá trị thực của tham số \(a\) để hàm số \(y = {\log _{2a + 3}}x\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\) là:
A. \(a > 1.\)
B. \(a > - 1.\)
C. \(a > 0,a \ne 1.\)
D. \(a > - 1,a \ne 1.\)
Advertisements (Quảng cáo)
Tập xác định của hàm số lôgarit \(y = {\log _a}x\left( {a > 0,a \ne 1} \right)\) là \(\left( {0; + \infty } \right).\)
Hàm số lôgarit \(y = {\log _a}x\) với \(a > 1\) đồng biến trên \(\left( {0; + \infty } \right).\)
Để hàm số \(y = {\log _{2a + 3}}x\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\) thì:
\(2a + 3 > 1 \Leftrightarrow a > - 1.\)
Đáp án B.