Bạn Chi vào website của một cửa hàng bán điện thoại tìm hiểu và đã thống kê số lượng một loại điện thoại theo giá bán cho kết quả như sau:
a) Đọc và giải thích mẫu số liệu ghép nhóm này.
b) 50% loại điện thoại trên có giá dưới bao nhiêu?
Giải thích theo bảng.
Tìm trung vị của mẫu số liệu. Ta có bảng số liệu ghép nhóm:
Advertisements (Quảng cáo)
Để tính trung vị \({M_e}\) của mẫu số liệu ghép nhóm ta làm như sau:
Bước 1: Xác định nhóm chứa trung vị. Giả sử đó là nhóm thứ j: \(\left[ {{a_j};{a_{j + 1}}} \right)\)
Bước 2: Trung vị là: \({M_e} = {a_j} + \frac{{\frac{n}{2} - \left( {{m_1} + ... + {m_{j - 1}}} \right)}}{{{m_j}}}\left( {{a_{j + 1}} - {a_j}} \right)\)
Trong đó, n là cỡ mẫu. Với \(j = 1\) ta quy ước \({m_1} + ... + {m_{j - 1}} = 0\). Trung vị chính là tứ phân vị thứ hai \({Q_2}.\) Trung vị của mẫu số liệu ghép nhóm xấp xỉ cho trung vị của mẫu số liệu gốc, nó chia mẫu số liệu thành 2 phần, mỗi phần chứa 50% giá trị.
a) Có 20 điện thoại dưới 2 triệu đồng, 5 điện thoại từ 2 đến 4 triệu đồng, 11 điện thoại từ 4 đến 7 triệu đồng, 18 điện thoại từ 7 đến 13 triệu đồng, 21 điện thoại từ 13 đến 20 triệu đồng.
b) \(\frac{n}{2} = \frac{{20 + 5 + 11 + 18 + 21}}{2} = \frac{{75}}{2} = 37,5\). Khoảng chứa trung vị là [7;13).
\({M_e} = 7 + \frac{{37,5 - \left( {20 + 5 + 11} \right)}}{{18}}\left( {13 - 7} \right) = 7,5.\)
Vậy có 50% điện thoại dưới 7 triệu rưỡi.