Trang chủ Lớp 11 SBT Toán 11 - Kết nối tri thức Bài 40 trang 72 SBT Toán 11 – Kết nối tri thức:...

Bài 40 trang 72 SBT Toán 11 - Kết nối tri thức: Cho hình chóp đều \(S. ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng a và \(SA = a\sqrt 2 \)...

Gọi \(O\) là giao điểm của \(AC\) và \(BD\). Vì \(S. ABCD\) là hình chóp đều nên \(SO \bot \left( {ABCD} \right)\). Áp dụng định lý Pytago tính . Lời giải bài tập, câu hỏi - Bài 40 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống - Bài tập ôn tập cuối năm. Cho hình chóp đều \(S. ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng a và \(SA = a\sqrt 2 \)...

Question - Câu hỏi/Đề bài

Cho hình chóp đều \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng a và \(SA = a\sqrt 2 \).

a) Tính theo a thể tích khối chóp \(S.ABCD.\)

b) Tính theo a khoảng cách giữa hai đường thẳng \(AD\) và \(SB\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) Gọi \(O\) là giao điểm của \(AC\) và \(BD\).

Vì \(S.ABCD\) là hình chóp đều nên \(SO \bot \left( {ABCD} \right)\).

Áp dụng định lý Pytago tính : \(SO = \sqrt {S{A^2} - O{A^2}} \).

Thể tích khối chóp \(S.ABCD\) bằng \(\frac{1}{3} \cdot {S_{ABCD}} \cdot SO\)

b) Vì \(AD//\left( {SBC} \right)\) và mặt phẳng \(\left( {SBC} \right)\) chứa \(SB\) nên

\(d\left( {AD,SB} \right) = d\left( {AD,\left( {SBC} \right)} \right) = d\left( {A,\left( {SBC} \right)} \right)\)

\(d\left( {A,\left( {SBC} \right)} \right) = 2.d\left( {O,\left( {SBC} \right)} \right)\).

Kẻ \(OM\) vuông góc với \(BC\) tại \(M,OH\) vuông góc với \(SM\) tại \(H\) thì

\(BC \bot \left( {SOM} \right) \Rightarrow BC \bot OH \Rightarrow OH \bot \left( {SBC} \right) \Rightarrow d\left( {O,\left( {SBC} \right)} \right) = OH.\)

Advertisements (Quảng cáo)

Tam giác \(SOM\)vuông tại \(O\), có đường cao \(OH\), khi đó \(OH = \frac{{SO \cdot OM}}{{SM}}\).

Suy ra \(d\left( {AD,SB} \right) = 2.OH\).

Answer - Lời giải/Đáp án

a) Gọi \(O\) là giao điểm của \(AC\) và \(BD\).

Vì \(S.ABCD\) là hình chóp đều nên \(SO \bot \left( {ABCD} \right)\).

Ta có tam giác \(SAO\) vuông tại \(O\) nên theo định lý Pythagore: \(SO = \sqrt {S{A^2} - O{A^2}} = \frac{{a\sqrt 6 }}{2}\).

Thể tích khối chóp \(S.ABCD\) bằng \(\frac{1}{3} \cdot {S_{ABCD}} \cdot SO = \frac{{{a^3}\sqrt 6 }}{6}.\)

b) Vì \(AD//\left( {SBC} \right)\) và mặt phẳng \(\left( {SBC} \right)\) chứa \(SB\) nên

\(d\left( {AD,SB} \right) = d\left( {AD,\left( {SBC} \right)} \right) = d\left( {A,\left( {SBC} \right)} \right)\)

Đường thẳng \(AO\) cắt mặt phẳng \(\left( {SBC} \right)\) tại \(C\) và \(O\) là trung điểm của đoạn \(AC\) nên \(d\left( {A,\left( {SBC} \right)} \right) = 2.d\left( {O,\left( {SBC} \right)} \right)\).

Kẻ \(OM\) vuông góc với \(BC\) tại \(M,OH\) vuông góc với \(SM\) tại \(H\) thì

\(BC \bot \left( {SOM} \right) \Rightarrow BC \bot OH \Rightarrow OH \bot \left( {SBC} \right) \Rightarrow d\left( {O,\left( {SBC} \right)} \right) = OH.\)

Tam giác \(SOM\)vuông tại \(O\), có đường cao \(OH\), khi đó \(OH = \frac{{SO \cdot OM}}{{SM}} = \frac{{a\sqrt {42} }}{{14}}\).

Vậy \(d\left( {AD,SB} \right) = 2.OH = \frac{{a\sqrt {42} }}{7}\).

Advertisements (Quảng cáo)