Trong mặt phẳng Oxy cho đường thẳng d có phương trình \(3x - 5y + 3 = 0\) và vectơ \(\overrightarrow v = \left( {2;3} \right)\). Hãy viết phương trình đường thẳng d’ là ảnh của d qua phép tịnh tiến theo vectơ \(\overrightarrow v \).
Gọi \(M'(x’;y’) \in d’\) là ảnh của \(M(x,y) \in d\) qua phép tịnh tiến theo vecto \(\vec v(2;3)\)
\( \Rightarrow \left\{ \matrix{
x’ = x + 2 \hfill \cr
y’ = y + 3 \hfill \cr} \right. \Rightarrow \left\{ \matrix{
x = x’ - 2 \hfill \cr
y = y’ - 3 \hfill \cr} \right.\)
Advertisements (Quảng cáo)
Do \(M(x,y) \in d\) nên
\(\eqalign{
& 3x - 5y + 3 = 0 \cr
& \Rightarrow 3(x’ - 2) - 5(y’ - 3) + 3 = 0 \cr
& \Leftrightarrow 3x’ - 5y’ + 12 = 0{\rm{ }}(d’) \cr} \)
Vậy \(M'(x’;y’) \in d’:3x’ - 5y’ + 12 = 0\)