Trang chủ Lớp 11 SBT Toán lớp 11 (sách cũ) Bài 1.38 trang 40 SBT Hình học 11: Chứng minh rằng tứ...

Bài 1.38 trang 40 SBT Hình học 11: Chứng minh rằng tứ giác MNPQ là một hình thang...

Chứng minh rằng tứ giác MNPQ là một hình thang cân.. Bài 1.38 trang 40 Sách bài tập (SBT) Hình học 11 - Ôn tập Chương I. Phép dời hình và phép đồng dạng trong mặt phẳng

Qua tâm G của tam giác đều ABC, kẻ đường thẳng a cắt BC tại M và cắt AB tại N, kẻ đường thẳng b cắt AC tại P và AB tại Q, đồng thời góc giữa a và b bằng 60°. Chứng minh rằng tứ giác MNPQ là một hình thang cân.

Gọi Q(G;1200) là phép quay tâm G góc 1200. Phép quay này biến b thành a, biến CA thành AB; do đó nó biến P thành N.

Advertisements (Quảng cáo)

Tương tự Q(G;1200) cũng biến Q thành M. Từ đó suy ra GP=GN,GQ=GM. Do đó hai tam giác GNQ và GPM bằng nhau, suy ra NQ = PM. Vì Q(G;1200) biến PQ thành NM nên PQ=NM. Từ đó suy ra hai tam giác NQM và PMQ bằng nhau. Do đó ^NQM=^PMQ. Tương tự ^QNP=^MPN.

Từ đó suy ra ^PNQ+^NQM=1800

Do đó NPQM. Vậy ta có tứ giác MPNQ là hình thang cân.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)