Gọi A’, B’ và C’ tương ứng là ảnh của ba điểmA, B và C qua phép đồng dạng. Chứng minh rằng \(\overrightarrow {AB} = p\overrightarrow {AC} \) nếu $$\overrightarrow {A’B’} = p\overrightarrow {A’C’} \) thì , trong đó p là một số. Từ đó chứng minh rằng phép đồng dạng biến ba điểm thẳng hàng thành ba điểm thẳng hàng và nếu điểm B nằm giữa hai điểm A và C thì điểm B’ nằm giữa hai điểm A’ và C’.
Để ý rằng
\(\eqalign{
& A’C{‘^2} = {k^2}A{C^2},A’B{‘^2} \cr
& = {k^2}A{B^2},\overrightarrow {A’C’} .\overrightarrow {A’B’} \cr
& = {k^2}\overrightarrow {AC} .\overrightarrow {AB} \cr} \)
Ta có:
Advertisements (Quảng cáo)
\({\left( {\overrightarrow {A’B’} - p\overrightarrow {A’C’} } \right)^2} = A’B{‘^2} - 2p\overrightarrow {A’B’} .\overrightarrow {A’C’} + {p^2}A’C{‘^2}\)
\(\eqalign{
& = {k^2}\left( {A{B^2} - 2p\overrightarrow {AB} .\overrightarrow {AC} + {p^2}A{C^2}} \right) \cr
& = {k^2}{\left( {\overrightarrow {AB} - p\overleftarrow {AC} } \right)^2} = 0 \cr} \)
Từ đó suy ra \(\overrightarrow {A’B’} - p\overrightarrow {A’C’} = \overrightarrow 0 \)
Giả sử ba điểm \(A,B,C\) thẳng hàng và điểm B nằm giữa hai điểm A và C. Khi đó \(\overrightarrow {AB} = t\overrightarrow {AC} \), với \(0 < t < 1\). Áp dụng bài 1.39 ta cũng có \(\overrightarrow {A’B} = t\overrightarrow {A’C’} \), với \(0 < t < 1\). Do đó ba điểm \(A’,B’,C’\) thẳng hàng và điểm B’ nằm giữa hai điểm A’ và C’.