Trang chủ Lớp 11 SBT Toán lớp 11 (sách cũ) Bài 3.45 trang 164 Sách bài tập (SBT) Hình học 11: Cho...

Bài 3.45 trang 164 Sách bài tập (SBT) Hình học 11: Cho tứ diện ABCD. Chứng minh rằng AB vuông góc với CD khi và chỉ...

Cho tứ diện ABCD. Chứng minh rằng AB vuông góc với CD khi và chỉ khi. Bài 3.45 trang 164 Sách bài tập (SBT) Hình học 11 - Ôn tập Chương III. Vectơ trong không gian. Quan hệ vuông góc trong không gian

Cho tứ diện ABCD. Chứng minh rằng AB vuông góc với CD khi và chỉ khi

\(A{C^2} + B{{\rm{D}}^2} = A{{\rm{D}}^2} + B{C^2}\)

Giả sử AB⊥CD ta phải chứng minh \(A{C^2} + B{{\rm{D}}^2} = A{{\rm{D}}^2} + B{C^2}\).

Thật vậy, kẻ BE⊥CD tại E, do AB⊥CD ta suy ra CD⊥(ABE) nên CD⊥AE. Áp dụng định lí Py-ta-go cho các tam giác vuông AEC, BEC, AED và BED ta có:

\(\eqalign{
& A{C^2} = A{{\rm{E}}^2} + C{E^2} \cr
& B{{\rm{D}}^2} = B{E^2} + E{{\rm{D}}^2} \cr
& B{C^2} = A{{\rm{E}}^2} + E{C^2} \cr
& {\rm{A}}{{\rm{D}}^2} = A{E^2} + E{{\rm{D}}^2} \cr} \) 

Advertisements (Quảng cáo)

Từ đó ta suy ra \(A{C^2} + B{{\rm{D}}^2} = A{D^2} + B{C^2}\)

Ngược lại nếu tứ diện ABCD có \(A{C^2} + B{{\rm{D}}^2} = A{{\rm{D}}^2} + B{C^2}\) thì: \(A{C^2} - A{D^2} = B{C^2} - B{{\rm{D}}^2}\).

Nếu \(A{C^2} - A{D^2} = B{C^2} - B{{\rm{D}}^2} = {k^2}\) thì trong mặt phẳng (ACD) điểm A thuộc đường thẳng vuông góc với CD tại điểm H trên tia ID với I là trung điểm của CD sao cho \(I{H^2} = {{{k^2}} \over {2C{\rm{D}}}}\).

Tương tự điểm B thuộc đường thẳng vuông góc với CD cũng tại điểm H nói trên. Từ đó suy ra CD vuông góc với mặt phẳng (ABH) hay CD⊥AB.

Nếu \(A{C^2} - A{D^2} = B{C^2} - B{{\rm{D}}^2} =  - {k^2}\) thì ta có và đưa về trường hợp xét như trên \(A{D^2} - A{C^2} = B{{\rm{D}}^2} - B{C^2} =  - {k^2}\).

Chú ý.Từ kết quả của bài toán trên ta suy ra:

Tứ diện ABCD có các cặp cạnh đối diện vuông góc với nhau khi và chỉ khi \(A{B^2} + C{D^2} = A{C^2} + B{C^2}\).

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)