Trang chủ Lớp 11 SBT Toán lớp 11 (sách cũ) Bài 6 trang 77 SBT Đại số và giải tích 11: Chứng...

Bài 6 trang 77 SBT Đại số và giải tích 11: Chứng minh rằng...

Chứng minh rằng . Bài 6 trang 77 Sách bài tập (SBT) Đại số và giải tích 11 - Ôn tập Chương II. Tổ hợp - Xác suất

Giả sử A và B là hai biến cố \({{P\left( {A \cup B} \right)} \over {P\left( A \right) + P\left( B \right)}} = a\). Chứng minh rằng

a) \({{P\left( {A \cap B} \right)} \over {P\left( A \right) + P\left( B \right)}} = 1 - a;\)     

b) \({1 \over 2} \le a \le 1.\)    

a)      Vì \(P\left( {A \cap B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right)\) nên

\({{P\left( {A \cap B} \right)} \over {P\left( A \right) + P\left( B \right)}} = {{P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right)} \over {P\left( A \right) + P\left( B \right)}} = 1 - a.\)

Advertisements (Quảng cáo)

b)      Vì \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right) \le P\left( A \right) + P\left( B \right)\)

Nên \(a = {{P\left( {A \cup B} \right)} \over {P\left( A \right) + P\left( B \right)}} \le 1\,\,\,\,\left( 1 \right)\)           

Mặt khác, \(2P\left( {A \cup B} \right) = P\left( {A \cup B} \right) + P\left( {A \cup B} \right) \ge P\left( A \right) + P\left( B \right)\)

Vậy \(a = {{P\left( {A \cup B} \right)} \over {P\left( A \right) + P\left( B \right)}} \ge {1 \over 2}\)

Kết hợp với (1), ta có \({1 \over 2} \le a \le 1\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)