Trang chủ Lớp 11 SGK Toán 11 - Cánh diều Bài 4 trang 56 Toán 11 tập 1 – Cánh diều: Cho...

Bài 4 trang 56 Toán 11 tập 1 - Cánh diều: Cho cấp số nhân \(\left( {{u_n}} \right)\) với \({u_1} = 3;{u_3} = \frac{{27}}{4}\) Tìm công bội q và viết...

Dựa vào công thức tổng quát và tính tổng của cấp số nhân để xác định . Gợi ý giải bài 4 trang 56 SGK Toán 11 tập 1 - Cánh diều Bài 3. Cấp số nhân. Cho cấp số nhân (left( {{u_n}} right))...

Question - Câu hỏi/Đề bài

Cho cấp số nhân \(\left( {{u_n}} \right)\) với \({u_1} = 3;{u_3} = \frac{{27}}{4}\)

a) Tìm công bội q và viết năm số hạng đầu của cấp số nhân trên

b) Tính tổng 10 số hạng đầu của cấp số nhân trên

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Dựa vào công thức tổng quát và tính tổng của cấp số nhân để xác định

Answer - Lời giải/Đáp án

a) Ta có: \({u_3} = {u_1}.{q^2} \Leftrightarrow \left( {\frac{{27}}{4}} \right) = 3.{q^2} \Leftrightarrow q = \frac{3}{2}\) hoặc \(q = - \frac{3}{2}\)

TH1:\(q = \frac{3}{2}\)

Advertisements (Quảng cáo)

Năm số hạng đầu của cấp số nhân: \(3;\frac{9}{2};\frac{{27}}{4};\frac{{81}}{8};\frac{{243}}{{16}}\)

TH2: \(q = - \frac{3}{2}\)

Năm số hạng đầu của cấp số nhân: \(3; - \frac{9}{2};\frac{{27}}{4}; - \frac{{81}}{8};\frac{{243}}{{16}}\)

b) Tổng 10 số hạng đầu:

TH1: \(q = \frac{3}{2}\)

\({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}} = \frac{{3\left( {1 - {{\left( {\frac{3}{2}} \right)}^{10}}} \right)}}{{1 - \frac{3}{2}}} = \frac{{3.\frac{{ - 58025}}{{1024}}}}{{1 - \frac{3}{2}}} = \frac{{ - 174075}}{{1024}}.\left( { - 2} \right) = \frac{{174075}}{{512}}\)

TH2: \(q = - \frac{3}{2}\)

\({S_n} = {u_1}.\frac{{1 - {q^n}}}{{1 - q}} = 3.\frac{{1 - {{\left( { - \frac{3}{2}} \right)}^{10}}}}{{1 - \left( { - \frac{3}{2}} \right)}} = - \frac{{11605}}{{512}}\)

Advertisements (Quảng cáo)