Trang chủ Lớp 11 SGK Toán 11 - Cánh diều Bài 6 trang 100 Toán 11 tập 1 – Cánh diều: Cho...

Bài 6 trang 100 Toán 11 tập 1 - Cánh diều: Cho hình chóp S. ABCD có đáy ABCD là hình bình hành. Gọi M, N, P...

Định lý Talet đảoNếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường. Phân tích và lời giải bài 6 trang 100 SGK Toán 11 tập 1 - Cánh diều Bài 2. Hai đường thẳng song song trong không gian. Cho hình chóp S. ABCD có đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA; I, J, K...

Question - Câu hỏi/Đề bài

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA; I, J, K, L lần lượt là trung điểm của các đoạn thẳng SM, SN, SP, SQ.

a) Chứng minh rằng bốn điểm I, J, K, L đồng phẳng và tứ giác IJKL là hình bình hành.

b) Chứng minh rằng \(IK//BC\)

c) Xác định giao tuyến của hai mặt phẳng (IJKL)(SBC)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Định lý Talet đảo

Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.

Đường trung bình của tam giác:

Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.

Dấu hiệu nhận biết hình bình hành:

Hình có một cặp cạnh đối song song và bằng nhau là hình bình hành.

Answer - Lời giải/Đáp án

a) Tam giác ABCM, N là trung điểm của AB, BC nên MN // AC (1)

Tam giác ACDP, Q là trung điểm của CD, DA nên PQ // AC (2)

Tam giác SMNI, J là trung điểm của SM, SN nên IJ // MN (3)

Advertisements (Quảng cáo)

Tam giác SPQL, K là trung điểm của SQ, SP nên LK // PQ (4)

Từ (1), (2), (3), (4) suy ra IJ // LK

Suy ra I, J, K, L đồng phẳng

Ta có:\(\frac{{MN}}{{AC}} = \frac{{QP}}{{AC}} = \frac{1}{2}\)

\(\frac{{{\rm{IJ}}}}{{MN}} = \frac{{LK}}{{PQ}} = \frac{1}{2}\)

Suy ra IJ = LKIJ // LK

Suy ra IJKL là hình bình hành

b) Ta có M, P lần lượt là trung điểm của AB, CD

Suy ra: MP // BC (1)

Tam giác SMP có: I, K là trung điểm của SM, SP

Suy ra: IK // MP (2)

Từ (1) và (2) suy ra: IK // BC

c) Ta có: J là giao điểm của hai mặt phẳng (IJKL)(SBC)

IK // BC

Từ J kẻ Jm // BC

Suy ra Jm là giao tuyến của hai mặt phẳng (IJKL)(SBC)

Advertisements (Quảng cáo)